
Software Qual J (2018) 26:855–889

A systematic survey on automated concurrency bug
detection, exposing, avoidance, and fixing techniques

Haojie Fu1 ·Zan Wang1 ·Xiang Chen2 ·Xiangyu Fan1

Published online: 10 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Currently, concurrent programs are becoming increasingly widespread to meet
the demands of the rapid development of multi-core hardware. However, it could be quite
expensive and challenging to guarantee the correctness and efficiency of concurrent pro-
grams. In this paper, we provide a systematic review of the existing research on fighting
against concurrency bugs, including automated concurrency bug exposing, detection, avoid-
ance, and fixing. These four categories cover the different aspects of concurrency bug
problems and are complementary to each other. For each category, we survey the moti-
vation, key issues, solutions, and the current state of the art. In addition, we summarize
the classical benchmarks widely used in previous empirical studies and the contribution of
active research groups. Finally, some future research directions on concurrency bugs are
recommended. We believe this survey would be useful for concurrency programmers and
researchers.

Keywords Concurrency bug detection · Concurrency bug exposing · Concurrency bug
avoidance · Concurrency bug fixing

� Zan Wang
wangzan@tju.edu.cn

Haojie Fu
fhj0909@tju.edu.cn

Xiang Chen
xchencs@ntu.edu.cn

Xiangyu Fan
fxy@tju.edu.cn

1 School of Computer Software, Tianjin University, Tianjin, People’s Republic of China

2 School of Computer Science and Technology, Nantong University, Nantong,
People’s Republic of China

DOI 10.1007/s11219-017-9385-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9385-3&domain=pdf
mailto:wangzan@tju.edu.cn
mailto:fhj0909@tju.edu.cn
mailto:xchencs@ntu.edu.cn
mailto:fxy@tju.edu.cn


856 Software Qual J (2018) 26:855–889

1 Introduction

Over the past few decades, the increasing availability of multi-core hardware is making
concurrent programs ubiquitous in the industrial and academic research area. However, it
also raises new challenges such as the well-known concurrency bug, which is introduced
by improper coordination among multi-threads and has caused severe failures with huge
financial loses and even loss of life. To reduce these losses and improve the reliability of
concurrent programs, an increasing number of researchers have proposed numerous testing
approaches to detect, expose, and fix concurrent bugs.

As the preliminary step of bug detection, some research focuses on how to expose
concurrency bugs effectively and thoroughly. For some bugs, which are unable to com-
pletely or unnecessarily be fixed, researchers have explored various ways to avoid them or
to recover the programs from those bugs without actually fixing them. However, concur-
rent software quality has not been improved before concurrency bugs are fixed. Therefore,
another research topic of whether concurrency bugs can be fixed automatically has been
raised recently. Cost-effective automatic repair techniques could improve the concurrent
programs’ quality at relatively low cost while significantly reducing losses brought by
defects. Nevertheless, a number of challenges and open issues towards this goal remain
unsolved.

1.1 Review method

This survey provides a systematic review of existing research on concurrency bugs, includ-
ing their exposing, detection, avoiding, and fixing. We reviewed the existing literature by
searching through journal articles and conference papers addressing any topic related to
concurrency bugs, including methods, tools, techniques, empirical evaluations, and sur-
veys. The search for relevant papers was carried out in the online repositories. Firstly, we
performed the search in the Google Scholar, DBLP database, and some main academic pub-
lishers including ACM, IEEE, Springer, Elsevier, and Wiley. We collected papers that have
either “concurrency bug”, “concurrent program”, “multithreaded program”, “data race”,
“atomicity violations”, “order violations”, or “deadlock” keywords in their titles, abstracts,
or keywords. Secondly, we included papers published during the period from 1993 to 2016
and excluded those marginal contributions and flawed designs. After a review of the results,
we manually screened and added some articles with fundamental contributions even though
they are not available in the above databases. Finally, we collected over 100 papers within
the scope of our survey. All of these papers cover quite a number of research works pub-
lished at leading conferences or journals, such as ICSE, OSDI, SOSP, PLDI, ASPLOS,
HPCA, ISCA, TSE, TOPLAS, TOCS, etc. These papers are classified into four categories
as follows:

(1) Automated concurrency bug exposing: Studies concerning different technologies to
make concurrency bugs manifest and reproduced effectively and efficiently.

(2) Automated concurrency bug detection: Studies concerning exploring effective ways to
identify the failure-inducing thread execution scheduling and even the root cause.

(3) Automated concurrency bug avoidance: Studies concerning how to tolerate exiting
bugs by preventing concurrency programs from failure.

(4) Automated concurrency bug fixing: Studies concerning exploring different ways of
fixing concurrency bugs.



Software Qual J (2018) 26:855–889 857

The four categories of studies are defined according to their goals. Concurrency bug
exposing aims to manifest the bug-triggering interleaving efficiently, which is the precon-
dition of identifying the bug’s root cause and even fixing it. An effective bug-exposing
approach would facilitate detecting, avoiding, and fixing concurrency bugs. Concurrency
bug detection focuses more on localizing a bug and identifying the root cause. It provides
the diagnosis of bugs to bug avoidance and fixing methods. Concurrency bug avoidance
and fixing would both help generate correct results of multi-threaded programs. The main
difference is that concurrency bug fixing is more useful for repairing program bugs than
concurrency bug avoidance.

Figure 1 shows the category distribution of the current state of research in concurrency
bug exposing, detection, avoidance, and fixing. Note that the categories are not exclusive:
that is, a paper may cover topics in multiple categories. We manually assign each paper to
one or more categories based on its main objective and contributions. Thus, our classifi-
cation is subjective and some papers may be classified into a different category by other
researchers. However, we believe that in general, the distribution shown in Fig. 1 represents
a fairly good indication of the topic distribution of the current state of research in address-
ing concurrency bug problems. Figure 2 illustrates the number of articles in this area from
1993 to 2016 published on conference, on journal and the sum of them, respectively.

1.2 Concurrency bugs classifications

Tan et al. (2014) conducted a comprehensive study of 2060 real-world bugs, which are
divided into four types: memory bugs, semantic bugs, concurrency bugs, and performance
bugs. Among them, we are particularly interested in concurrency bugs, which can be fur-
ther classified into the following four categories: data races, atomicity violations, order
violations, and deadlocks.

A data race occurs when there are two concurrent accesses from different threads to the
same memory location and at least one of them performs a write operation. Figure 3 shows
a data race bug example in fast Fourier transform (FFT) transformation (Deng et al. 2013).
In this example, the programmer plans to execute statement S2 in Thread 2 before executing

Fig. 1 Classification of research topics on concurrency bugs



858 Software Qual J (2018) 26:855–889

Fig. 2 Number of publications per year

statement S1 in Thread 1. However, this is not guaranteed in the current block of codes, since
the proper synchronization mechanism to guarantee the desired execution order is missed.
As a result, in some cases S1 may execute before S2 and thus lead to an incorrect solution.

An atomicity violation occurs when two program blocks from two threads interleave
unserializably, which violates the expected atomicity of one or both blocks. Figure 4 shows
an atomicity violation extracted from MySQL (Park et al. 2012). The read access S3 of
the variable log type in Thread 2 may interleave between the two write accesses, S1 and
S2, in Thread 1. The programmer did not protect S1 and S2 in an atomic section. The bad
interleaving leads S3 to using the incorrect definition by S1, and thus produces a wrong
answer or a program crash.

An order violation occurs when an instruction P is expected to execute before/after
another instruction Q, but actually executes after/before Q ascribe to the lack of synchro-
nization. Lu et al. (2008) first presented the order violation as a category of concurrency
bugs. For example, in Fig. 5 (Shi et al. 2010), the programmer assumed that statement S3 in
Thread 2 should always happen before S2 in Thread 1. A crash would happen once an order
violation bug occurs, e.g., S2 occasionally comes before S3.

Deadlock can usually be divided into two types: resource deadlocks and communication
deadlocks, respectively (Joshi et al. 2010). A resource deadlock occurs when at least two

Fig. 3 A data race bug in FFT (Deng et al. 2013)



Software Qual J (2018) 26:855–889 859

Fig. 4 An atomicity violation bug in MySQL (Park et al. 2012)

threads wait to acquire a synchronization object that is held by another thread related to one
of the competing threads, resulting in a circular waiting cycle between them. A communi-
cation deadlock is communication deadlock. It is usually caused by a set of threads blocks
waiting for a lock held by one thread within the same set. It is rooted in the misuse of condi-
tion variables in threads blocks or abnormal mutual effect between deadlocks and condition
variables. Figure 6 depicts a real-world deadlock bug in HawkNL (Zhang et al. 2013). As
we can see, both Thread 1 and Thread 2 could acquire nlock and slock. Thread 1 acquires
nlock first and Thread 2 acquires slock first, and each of them is waiting for the other thread
to release the held lock. This situation will lead to a deadlock.

1.3 The features of concurrency bugs

Most concurrency bugs exist in concurrent programs of operating systems. Thus, these bugs
are more likely to cause program hangs or crashes (Tan et al. 2014), which may cause
significant and irreparable losses. However, the space of execution interleaving between
concurrent programs expands exponentially with the increasing of the number of threads
and program size. Analyzing concurrent programs becomes computationally prohibitive
when the program size is significantly large. The execution of concurrent programs are of
high indeterminacy even if the inputs are identical. Thus, in practice, programmers are quite
vulnerable to concurrency bugs due to the highly intractable feature of concurrent programs.
This also poses great challenges for us to detect, expose, avoid, and fix concurrency bugs.

Another challenge of addressing concurrent bug problems is that it is difficult to be
reproduced because of the large state space. Most concurrency bugs could not be reproduced
within an acceptable probability. In the worst case, the reproducibility rate could be lower
than 10%. The low reproduction rate makes concurrency bugs difficult to detect and expose.
Concurrency bugs are usually hidden in certain rare interleavings. It is infeasible to traverse

Fig. 5 An order violation bug in HTTrack (Shi et al. 2010)



860 Software Qual J (2018) 26:855–889

Fig. 6 A deadlock bug in
HawkNL (Zhang et al. 2013)

all possible interleavings. Which part of interleavings should be checked and how to check
are key issues to be addressed in concurrency-bug detection and exposing.

Even though concurrency bugs can be detected, they are hard to fix. The fixing pro-
cess may take a long time and the generated patches may easily lead to new errors (Yin
et al. 2011). Patches usually do not really fix bugs but decrease the probability of their
manifestation.

Detecting, exposing, and fixing concurrency bugs are confronted with several key
challenges as follows:

(1) Challenges of concurrency-bug exposing: The huge interleaving space is the biggest
challenge against effective concurrency-bug exposure. High coverage criteria is
needed for exposing different buggy interleaving patterns. Different inputs may lead
to different execution paths and results for the same concurrent program. Therefore,
significant research efforts have been devoted to the study of input generation in the
literature.

(2) Challenges of concurrency-bug detection: Similar to concurrency-bug exposing, huge
interleaving space also makes it cumbersome to effectively detect concurrency bugs.
Both static and dynamic detection techniques produce false positives and false nega-
tives. Another important aspect of evaluating a concurrency bug detection technique
is the constraint of limiting the overhead within a reasonable level.

(3) Challenges of concurrency-bug fixing: A vital prerequisite for concurrency-bug fixing
is to identify the root causes of the bugs. Existing work either develops new detection
methods or leverages existing tools to identify the root causes. In addition to generating
correct patches for concurrency bugs, techniques for fixing concurrency bugs should
not introduce new bugs into the original program and reduce program performance
and code readability significantly.

Deng et al. (2015) conducted a survey in 2015 and discussed the existing progress on
fixing, preventing, and recovering from concurrency bugs. They mainly review their work
on fixing, preventing, and recovering from concurrency bugs and make a comparative anal-
ysis on three techniques: CFix, AI, and ConAir. Based on this, we further collect the
latest research achievements related to the study of exposing, detecting, avoiding and fixing
concurrency bugs. Compared with Deng et al.’s work, we make a more systematic and inte-
grated review of different aspects of concurrency bugs. For each aspect, we review the key
issues, challenges, and the current state of the art in order to make a comprehensive review
of this hot research issue.

The remainder of this article is organized as follows. We firstly discuss the techniques
and research achievements in exposing concurrency bugs in Section 2, and move to the topic
of concurrency bugs detection in Section 3. Sections 4 and 5 focus on avoiding concurrency



Software Qual J (2018) 26:855–889 861

bugs and fixing concurrency bugs, respectively. We conclude and present the benchmarks
that are the most actively used in Section 6. In Section 7, we conclude our survey with future
directions.

2 Automated concurrency bug exposing

Concurrency bug exposing is important because it is the prerequisite for concurrency bug
detection, avoidance, and fixing. For most concurrency bugs, the thread interleavings can
expose them rarely without any perturbation during the execution. Stress-testing is a com-
mon and traditional practice to expose concurrency bugs. Nevertheless, stress-testing is
evaluated to be inadequate because it tends to test similar thread interleavings repeatedly
over an input. As a result, it is almost impossible to expose a rare buggy interleaving through
stress-testing. Concurrency bugs are exposed with a low rate mainly because: (1) The inter-
leaving space is huge and grows exponentially with the size of the code. (2) Concurrency
bugs are always concealed in certain rare and special memory access interleavings. (3) Con-
current programs will be executed along with the same interleaving pattern without extra
scheduling. To overcome these problems, researchers have done lots of work and have pre-
sented various solutions. A good bug-exposing technique must be effective, efficient, and
reproducible, so that it will be accepted by more developers.

Figure 7 shows the process of concurrency bug exposing. Concurrent programs are firstly
analyzed to identify suspicious interleavings. Then a controlled testing is conducted with
different strategies appended to the programs in order to expose bugs. The concurrency bug-
exposing techniques come in three types and will be introduced separately in the following
three sections.

2.1 Random delay disturbance

This kind of technique inserts random disturbance when concurrent programs are access-
ing shared memory and synchronizing, which can effectively increase the probability of
exposing all kinds of concurrency bugs. Essentially, with the random delay disturbance, the
probability of triggering the rare execution interleaving rises.

Bron et al. (2005) employed random delay disturbance to design a new coverage model
called a synchronization model to control the executions of different threads. Coverage
analysis is useful for exposing techniques. In order to check whether all synchronization
statements are tested in concurrent programs, Bron et al. added random delay disturbance
in code and force a thread to execute by blocking another one. An input and an interleaving,
which can trigger a concurrent bug, are essential for exposing it. Stress-testing is known as

Fig. 7 The generalized framework of exposing



862 Software Qual J (2018) 26:855–889

a common practice to expose concurrency bugs but empirical evidence clearly demonstrates
that this form of testing is inadequate. To compensate, several previous works (Sen 2008;
Musuvathi et al. 2008) have focused on improving stress-testing. However, these works
select only one thread to execute at a time, which causes much overhead during the testing runs.

To address the limitation of stress-testing, researchers are devoted to studying more effi-
cient testing methods. CTrigger (Park et al. 2009; Lu et al. 2011b) employs random delay
disturbance and allows each test run to use multiple processors so that it can effectively and
efficiently expose atomicity violations. It firstly conducts a study of some program execu-
tions and identifies unserializable interleavings. Then it applies a probability to each feasible
interleaving and ranks them in order to make low-probability interleavings expose atomicity
violations. CTrigger inserts synchronization manually at a few undetermined points of pro-
grams. Similar to CTrigger, Chew (2009) proposes a system to detect, prevent, and expose
atomicity violations. For exposing bugs, the system injects delays randomly between mem-
ory accesses to make bugs easier to be expose. This technique exposes atomicity violations
online, but CTrigger attempts to expose atomicity violations offline. Due to the different
goals, Chew puts more efforts on reducing performance overhead. To reduce excessive
overhead of previous techniques, Kivati (Chew and Lie 2010) is proposed to find and pre-
vent bugs with low overhead. The remote thread was suspended by Kivati so as to protect
the atomicity region. Kivati is able to detect quickly and prevent atomicity violations on
commodity hardware with a low overhead.

2.2 Thread scheduling/switch

The thread scheduling/switch technique controls the scheduling mechanism directly or indi-
rectly. Before or after a thread accessing shared memory or doing synchronization control,
the technique can suspend the current thread and switch to execute another one.

Other than inserting random disturbance, Bron et al. (2005) also leverage thread schedul-
ing to make more combination forms of thread interleavings. CHESS (Musuvathi et al.
2008) is a tool that can be used to find and reproduce concurrency bugs. It is like the
stateless model checking and detects both safety and liveness violations. CHESS controls
thread scheduling with its scheduler to execute a large number of code and can reproduce
crashing bugs persistently even if no one knows the root cause. Musuvathi et al. (Musu-
vathi and Qadeer 2007) propose an iterative context-bounding algorithm and implement it
in CHESS. This algorithm studies the relationship between context switches in an execu-
tion of multithreaded programs and the efficiency when testing multithreaded programs. A
context switch means a thread stops executing temporarily and another thread starts. They
further discuss preempting context switch, which occurs when a thread stops execution at
an arbitrary point by the scheduler. This algorithm makes a limitation to the number of con-
text switches but leaves the depth of the execution unlimited. Their experimental results
show that under the limit of two preempting context switches, the iterative context-bounding
algorithm found nine out of 16 bugs. Similar to CHESS on reducing the test space with
a small number of preemptions, Maple (Yu et al. 2012) also bounds the number of inter-
thread memory dependencies to two and increases the interleaving coverage by memorizing
tested interleaving and exposing untested interleavings. It develops an online technique to
predict which untested interleaving can be exposed for a given test input and then it controls
thread scheduling while program executing so that the predicted untested interleavings are
exposed.

In contrast, PCT (probabilistic concurrency testing) (Burckhardt et al. 2010) can intro-
duce an arbitrary number of preemptions even if the bug depth is small. PCT is a randomized



Software Qual J (2018) 26:855–889 863

algorithm that is used to test concurrent programs as a scheduler. The key idea of PCT
is to find a concurrency bug regarding the characterization of the depth of the bug as the
minimum number of context scheduling. This would raise programmers’ confidence when
testing concurrent programs.

2.3 Fuzzing

Fuzzing firstly detects potential concurrency bugs by bug detectors and then controls thread
scheduling and execution according to the bug reports so that the program may execute
specific interleaving patterns to expose concurrency bugs. Most of the fuzzing methods get
bug-manifestation features based on static analysis on real-world concurrency bugs. Due to
the ability of exposing concurrency bugs purposefully, fuzzing it is more efficient than other
methods.

With the motivation of replaying data races with high efficiency and low overhead, Race-
Fuzzer (Sen 2008) can find and reproduce bugs in concurrent programs. It firstly detects
suspicious races by a detection technique, and then makes a randomized thread scheduler to
control thread execution in order to trigger a real data race from those potential ones detected
before. RaceFuzzer can pick up real data races, which may cause program exceptions from
potential ones and easily reproduce them. Unfortunately, the bug-exposing capability of
RaceFuzzer relies a lot on the underlying data race detectors. Many bugs would be ignored
due to a bad coverage of the underlying detectors.

For deadlock exposing, DeadlockFuzzer (Joshi et al. 2009) detects real deadlocks in
multithreaded programs. Firstly, DeadlockFuzzer finds suspicious deadlocks by a dynamic
technique. Next, it controls thread scheduling with a randomized scheduler to replay the
suspicious deadlocks so that these deadlocks can be exposed with high probability. Cai
et al. (2014) experimentally show that DeadlockFuzzer is unable to confirm a real deadlock
with high probability. To address this problem, they present ConLock (Cai et al. 2014) to
dynamically check deadlocks using constraint-based approaches. They firstly study a given
potential deadlock to get a set of constraints of thread scheduling. These constraints describe
the rules that the order of acquiring or releasing locks of the pair of threads involved in that
given deadlock. After that, they run the program within the constraints in order to create
the deadlock. If the deadlock cannot be created, ConLock reports this as false positive. The
validation process proves that ConLock reports all 11 deadlocks of real-world programs
with high confirmation probability within the range of 71 to 100%.

2.4 Conclusions of concurrency bug exposing methods

Stress-testing used to be treated as a common method for concurrency bug exposing. How-
ever, stress-testing has many limitations such as inadequacy and inefficacy, which motivates
some alternative techniques with different strategies. To conclude, inserting random delay
disturbance indirectly affects the scheduling of threads, while thread scheduling/switch
methods directly control thread scheduling. Random delay disturbance can be used to
analyze synchronization coverage, which is a very important measurement criterion for
exposing. However, inserting random delay disturbance may cause significant performance
overhead. Thread scheduling/switch technique controls multithreaded programs to run like
a scheduler. This technique is targeted to expose concurrency bugs, which is different from
random delay disturbance technique. However, none of the above approaches consider the
impact on thread scheduling. Different from them, fuzzing methods consciously control
thread scheduling in order to increase the likelihood of exposing concurrency bugs, but



864 Software Qual J (2018) 26:855–889

rely on the detection results of other tools. In addition, fuzzing has advantages in deadlock
exposing.

3 Automated concurrency bug detection

Identifying concurrency bugs is time-consuming and usually requires extensive debugging
experience for programmers. Automated concurrency bug-detection techniques could help
programmers to find bugs timely and accurately. However, the detection results might be
misleading, which falls into the following two categories: false positives and false negatives.
A false positive is reported when a bug-free pattern is treated as a buggy one while a false
negative ignores a really buggy pattern. To reduce both false-positive and false-negative
rate, many approaches have been proposed.

In this section, we summarize the main contributions to concurrency bug detection in
the literature. Figure 8 depicts the whole process of concurrency bug detection. Given the
concurrent program P and test suit T, different methods can be applied to detect concurrency
bugs. Based on whether programs are executed or not, we classify all detection methods
into three categories: static, dynamic, and hybrid. Each of these will be discussed in detail
in the rest of this section.

3.1 Static methods

Static methods detect concurrency bugs by analyzing suspicious code paths without execut-
ing programs. This type of method can find bugs and test the paths, which is hardly reached
during programs running by off-line analysis. As a result, static methods are more effective
than dynamic ones (Engler and Ashcraft 2003).

Concurrency bugs are scheduler-dependent, which are difficult to be found by compile-
time checks like traditional testing techniques. Flanagan and Freund (2000) present a
static race detection analysis for concurrent Java programs. This analysis system proceeds
from the race-avoidance rules, which is lock-based synchronization. Then the system tests
whether a lock is held correctly no matter when a shared variable is accessed, but their
system requires programmers to write additional type annotations, which may cause extra
overhead. Based on this, Abadi et al. (2006) perform a static race-detection analysis for
large-scale concurrent Java programs. The analysis is type-based, without the limitation of
the test coverage concerns. The analysis is feasible for thread-local classes and those classes
that have internal synchronization or require client-side synchronization. They evaluated
the effectiveness of the technique on 4000 lines of Java code and detected a number of race
conditions in the standard Java libraries and some other test programs. Engler presented

Fig. 8 The whole process of concurrency bug detection



Software Qual J (2018) 26:855–889 865

RacerX (Engler and Ashcraft 2003), which can detect race conditions and deadlock without
requiring annotations. RacerX effectively finds race conditions and deadlocks by concur-
rent inter-procedural program analysis and flow-sensitive analysis in large systems. It finds
16 bugs in two operating systems with totally over 2.3 MLOC. Though RacerX can han-
dle large programs, only a relative small amount of bugs (high false-negative rate) can be
detected.

To improve RacerX, Naik et al. (2006) propose a novel static technique for Java program
race detection. Their algorithm is context-sensitive but not flow-sensitive. The four stages of
the algorithm, which are reachable pairs, aliasing pairs, escaping pairs, and unlocked pairs,
sequentially refine the race-related memory accesses. The key approach of their algorithm
is a form of context sensitivity, which makes this technique scalable to be applied in large,
widely used programs. This technique finds more bugs than all previous static race detection
techniques including RacerX. In their largest benchmark, derby, the technique reports 1018
races revealing 319 distinct bugs.

As an improvement of RacerX, Naik and Aiken (2007) then present a new algorithm.
This algorithm addresses RacerX’s limitation in proving race freedom. They consider that
the core to prove race freedom is to show that if two locks are distinct, then the memory
locations they guard are also distinct. They present conditional must not aliasing: under the
assumption that two objects are not aliased, prove that two other objects are not aliased.
They use conditional must not aliasing to analyze multi-threaded programs and detect races
statically. Vaziri et al. (2006) think that most approaches are code-centric, as a result, the
approaches do not consider the problems caused by inconsistency lock mechanism when
accessing shared data throughout the program. They present a data-centric approach (Vaziri
et al. 2006) and present 11 suspicious interleaving patterns that are considered as the new
definition of data races. Besides, they statically analyze which part of the code must be
modified to avoid data races on condition of the new definition.

All methods mentioned above are applied to Java programs. There is also another method
applied to C programs. Voung et al. (2007) present RELAY, a static and scalable technique
to detect data race in the Linux kernel. Unlike RacerX, which uses a top-down approach
to compute the lock-sets at each program point, RELAY performs a bottom-up context-
sensitive analysis to detect data races. The key idea of RELAY is relative lockset, which
helps them analyze the behavior of a function independent of the calling context. RELAY
found 53 races for a 4.5 million lines of C code. However, its false-positive rate is more than
70%.

3.2 Dynamic methods

At present, the main method to detect concurrency bugs is the dynamic method. The advan-
tage of dynamic methods is that they only check observed feasible execution paths and can
accurately judge the values of variables and threads interleaving modes. As a result, dynamic
methods are more flexible for detecting different problems, such as plagiarism detection
(Tian et al. 2017). Nevertheless, the disadvantage of dynamic methods is the heavy overhead
and thus cannot be implemented in those programs that are sensitive to speed.

To locate the faults in concurrent programs, Savage et al. (1997) present Eraser, a
dynamic tool using lockset algorithm that can detect data races. This is the first dynamic
race-detection tool used in multithreaded production servers. They use Eraser for lock-based
synchronization and to make sure shared-memory accesses confirms the programming pol-
icy, which can protect programs from data races. Eraser has the advantage of checking
unannotated programs, but it may fail to detect certain errors because of insufficient test



866 Software Qual J (2018) 26:855–889

coverage. Smaragdakis et al. (2012) introduce a new relation called causally precedes (CP),
which is the generalization of the happens-before algorithm and can observe more races and
has no loss of accuracy and completeness. CP is superior to past detection approaches on
soundness and of polynomial complexity.

As a hybridization of both lockset and happens-before algorithms, Choi et al. (2002)
present an approach to detect data races dynamically for object-oriented programs. Their
experimental results on benchmarks mtrt , tsp, sor2, elevator , and hedc show that this
approach significantly outperforms existing techniques in terms of detection efficiency
improvement and overhead reduction. Eraser enforces a unique lock to protect every shared
variable, however, this approach does not take the same strategy as Eraser and it has lower
overhead but higher precision. Unlike Eraser and Choi’s approach, Yu et al. (2005) propose
a practical and run-time race detection tool called RaceTrack. It executes instrumentation at
the virtual machine level, which is designed for object-oriented programs and implemented
in the virtual machine of Microsoft’s Common Language Runtime. RaceTrack first tracks
the program execution traces based on the instrumentation information. Then it reports sus-
picious patterns of memory accesses once they are observed. It also uses a hybrid detection
algorithm to monitor memory-shared accesses in order to improve the accuracy.

Different from any lockset and happens-before algorithms and without requiring a priori
program annotation, Xu et al. (2005) design a Serializability Violation Detector (SVD) to
protect buggy concurrent programs from errors using backward error recovery (BER) and to
provide errors root causes for programs debugging. Instead of requiring a priori annotations,
SVD enables a posteriori examination, which can be readily applied to large and important
programs. Flanagan et al. argue SVD enforcing Strict 2-Phase Locking to ensure serializ-
ability is sufficient but not necessary, and thus they take the lead in performing a sound
and complete dynamic analysis (Flanagan et al. 2008) for atomicity violations. Given a pro-
gram, the analysis explores the accurate dependencies between memory accesses in certain
code regions. If there are accesses that are not conflict-serializable, the analysis provides a
detection report of error messages. Similar to SVD, ToleRace (Ratanaworabhan et al. 2009)
is also distinct from the lockset and happens-before algorithms, but it only focuses on asym-
metric races. ToleRace is able to detect and tolerate races by a transaction-like approach and
reduces the overhead of dynamic race detection to 6.4% on average.

Most previous work only targets one specific type of concurrency bug. For example,
Velodrome (Flanagan et al. 2008) is only designed for checking atomicity violations. Dif-
ferent from those works, Jin et al. (2010) propose Cooperative Crug Isolation (CCI), a
technique designed for a wide variety of concurrency bugs. CCI has low overhead and
satisfactory scalability on concurrency bug detection and root-cause analysis. It collects
the information of predicates related to memory. The random sampling strategies of CCI
lower the run-time overhead. Sampling information is processed by statistical models to
effectively detect concurrency bugs and obtain their root causes.

As one of the closest studies to CCI, Falcon (Park et al. 2010) studies the constructs cor-
responding directly to faults and also takes the ranking scheme. Falcon is a dynamic fault
localization tool which can present faulty data-access patterns and also detect different types
of concurrency bugs. It uses pattern-based analysis method to capture both order violations
and atomicity violations. It first works with a set of conflicting interleaving patterns that
induce order violation and a set of unserializable interleaving patterns that induce atomicity
violation, then monitors program execution to detect if actual interleavings match the two
kinds of patterns and finally it uses pass/fail statistics to compute a suspiciousness value for
all occurring patterns. Comparing to CCI, Falcon may find the real bugs more effectively.
UNICORN (Park et al. 2012) modified Falcon by monitoring pairs of memory access and



Software Qual J (2018) 26:855–889 867

then combining those pairs into patterns as the ranking units implemented in both Java and
C++. Unlike Falcon, UNICORN can detect both single-variable and multi-variable viola-
tions, so that the most important classes of non-deadlock concurrency bugs can be covered
by UNICORN.

The detection tools mentioned above rely on specific bug patterns, but Recon (Lucia et al.
2011) is not pattern-based and generally used for handling a variety of single- and multi-
variable errors. Recon has the advantage of not only bug detection, but also reporting a short
fragment of failure-inducing execution schedules, which can help programmers understand
the bugs better.

Some methods can not only detect concurrency bugs but also tolerate bugs during
production runs. Zhang et al. (2016) propose an innovative program invariant called Antic-
ipating Invariant (AI) to detect most kinds of concurrency bugs. They use AI to generate a
software-only system that can detect buggy thread interleavings right before the time when
bugs can be avoided with low-overhead. AI can also be used to tolerate many concurrency
bugs, expose order violations, and generate emergency patches.

Improper uses of locks may lead to deadlocks and prevent programs from further
progress, so some detection techniques for deadlocks are proposed exclusively. Cai et al.
(2012) present MagicFuzzer for deadlock detection. After executing a tested program, Mag-
icFuzzer produces a log containing lock dependency information. Next, an algorithm called
Magiclock identifies hidden deadlock cycles from the log. Finally, MagicFuzzer tries to
trigger the potential deadlock cycles and reports it if one deadlock cycle occurs. To improve
the efficiency and scalability of this technique, MagicFuzzer lessens lock dependencies for
cycle detection. Later, based on this work, they improved the algorithm and presented Mag-
iclock (Cai and Chan 2014), which is considered a more generalized algorithm. Cai et al.
(2016) propose ConLock+ to address the limitation in scalability and false positives of exist-
ing deadlock detectors. Since a deadlock always leads to a cycle that at least two threads are
waiting for each other, this technique generates a set of constraints for each cycle by analy-
sis, and the involved execution in order to get a set of scheduling constraints that may cause
deadlock. Then, ConLock+ is implemented to verify whether a cycle exists and whether a
deadlock can be triggered. Once the deadlock is triggered, ConLock+ does a follow-up analy-
sis to identify the involved memory accesses. This technique has been implemented on 16
real deadlocks in several real-world programs, and has shown good effectiveness and efficiency.

Unlike other work that focuses on bugs caused by buggy interleavings, Zhang et al.
(2010) focus on bugs that can cause program crashes and built ConMem. These bugs are
caused by incorrect thread interleavings leading to memory problems. ConMem detects any
erroneous interleavings that can lead to program crashes by monitoring program execu-
tion, analyzing memory accesses, and synchronizations. The experimental results show that
ConMem detects eight out of nine real-world severe concurrency bugs with much lower
false-positive rates. Asymmetric race is a special class of race conditions. Especially, in
a multithread program, one thread correctly runs with the lock of a given shared variable
which is incorrectly accessed by another thread.

3.3 Hybrid methods

Besides the above two main types of concurrency bug detectors, there are still some other
methods that either combine static and dynamic methods together or combine one of the
two methods with other techniques. Further, we include papers using formal methods for
concurrency bug detection and make an analysis of these papers in two categories: symbolic
execution and model checking.



868 Software Qual J (2018) 26:855–889

3.3.1 Combination of static and dynamic methods

The combinations of static and dynamic methods leverage advantages from those combined
ones to obtain more powerful detection ability.

Lu et al. (2007) first analyzed the limitations of previous approaches and then found
that most previous techniques that detect concurrency bugs need specific synchronization
semantics, which is difficult to recognize without prior knowledge and may lead to spurious
bug reports. Although SVD is the first tool for detecting atomicity violation, it can only be
applied to a limited subset of atomicity violation bugs. As a result, Lu et al. (2007) firstly
propose an atomicity violation detection tool called AVIO, combining static approaches and
dynamic approaches together. They mention Access-Interleaving invariants (AI invariants),
which represent those parts of code that are expected to execute atomically. AI invariants
are extracted through a large number of correct runs. Once certain memory access interleav-
ings violate those invariants at run time, concurrency bugs are detected. Similarly, Shi et al.
(2010) also extract invariants from training runs and then dynamically detect violations.
They present a new concept named definition-use invariants (DefUse invariants) (Shi et al.
2010), which describe the intrinsic relationships between definitions and uses for multi-
threaded and single-threaded programs. Local/Remote (LR) invariants, follower invariants,
and definition set (DSet) invariants are three types of DefUse invariants. The detection pro-
cess includes extraction of DefUse invariants and detection of a variety of program bugs
leveraging DefUse invariants. Unlike previous work, this tool focuses on different invariants
and data flow, and it is the first method to detect both concurrency and sequential bugs. Due
to the fundamental limitations of the existing work, such as non-negligible false negatives
and false positives and user unfriendliness, a consequence-oriented approach is presented
by Zhang and his colleagues. Zhang et al. (2011) summarize a bug’s lifecycle into three
stages: (1) triggering, (2) propagation, and (3) failure. Different from traditional techniques
that put much effort on stage (1), the proposed tool takes a consequence-oriented approach,
which detects concurrency bugs from the back forward. That is, the approach first statically
finds the buggy code region in a program binary, and then at run time it monitors the execu-
tion of a tested program and identifies the memory accesses that can lead to software failure.
This approach effectively improves the bug-detection coverage and accuracy.

Kasikci et al. (2013) find that static and dynamic detection tools have their own draw-
backs in the performance of false positives, false negatives, and overhead. Both static and
dynamic methods have low accuracy and are not very practical. Kasikci et al. present Race-
Mob (Kasikci et al. 2013), a data race detector with good accuracy. RaceMob first statically
detects suspicious data races, then it dynamically validates if all detected races are true. The
combination of static and dynamic detection helps to guarantee low runtime overhead and
high accuracy. Finally, in the list provided by RaceMob, data races with different sever-
ity are reported to programmers for efficient debugging. Different strategies are taken in
dynamic phase by Deng et al. (2013). These strategies are applied to a set of inputs to
reduce effort of detecting concurrency bugs, which can therefore improve the detecting per-
formance. They conducted a study and found that existing concurrency bug detectors are
not applicable for many inputs. In dynamic phase, they present Concurrent Function Pair
(CFP), a new interleaving-coverage metric, and leverage it to detect concurrency bugs. The
evaluation shows that CFP-guided concurrency-bug detection is more efficient in improving
bug-detection efficiency than previous works.

Also, innovative and practical tools are presented. Aiming at semantic and concurrency
bugs, MUVI (Lu et al. 2007) focuses on detecting inconsistent updates and multi-variable
concurrency bugs. MUVI combines static program analysis and data mining techniques. It



Software Qual J (2018) 26:855–889 869

is the first tool to identify multi-variable access correlations that can be used to detect multi-
variable inconsistent update bugs. They also extend lockset and happens-before detection
methods and present multi-variable data race detection methods as a supplement of existing
techniques. In their subsequent work (Lu et al. 2011a), they propose two program invari-
ants by studying the characteristics of real-world concurrency bugs and implement AVIO
and MUVI as two feasible tools. The evaluation results show that both AVIO and MUVI are
effective tools with fewer false positives and higher accuracy. Portend+, a tool presented
by Kasikci et al. (2015), not only detects data races but also analyzes the potential conse-
quences in order to judge the severeness of each bug. In their definition, data races come in
four main types: specification violated, output differs, k-witness harmless, and single order-
ing. They combine multipath and multischedule analysis with symbolic program-output
comparison to classify data races according to their severity. Portend+ is the first technique
to classify data races and the classification helps programmers understand bugs better.

3.3.2 Formal methods

In computer science, formal methods are a kind of mathematically based techniques for
specifying and verifying complex software and hardware systems (Clarke and Wing 1996).
Applying formal methods can improve the reliability and robustness of a system (Michael
1997). For concurrent programs, formal methods, such as symbolic execution methods and
model checking methods, can reduce the complexity of the program analysis. These meth-
ods use different strategies from static and dynamic methods and we will make a detailed
discussion on these.

(1) Symbolic execution

Symbolic execution assumes symbolic values for inputs rather than actual inputs as nor-
mal execution of the program. It has already been applied for systematic testing sequential
programs (Cadar et al. 2008; Godefroid et al. 2005; Sen et al. 2005; Tillmann and Halleux
2008). It is also useful for testing concurrent programs. Many techniques use symbolic exe-
cution to prune redundant executions in concurrent programs, which makes concurrency
bug detection much easier.

Predictive analysis detects concurrency bugs during run-time by monitoring execution
trace. Some predictive bug detection methods that are based on satisfiability modulo theory
(SMT) solvers (Wang et al. 2010; Wang et al. 2011) have been presented. These methods
utilize the source code and execution trace to build a symbolic predictive model. Then a
SMT solver is employed to check the potential interleavings for concurrency bugs. Kundu
et al. (2010) do not directly detect bugs in concurrent programs, and present CONTESSA to
improve the coverage of testing using SMT solvers. CONTESSA leverages symbolic anal-
ysis to explore thread interleavings. Symbolic analysis improves the efficiency of program
testing because it avoids enumeration of interleavings. Despite these bug detectors, another
SMT-based symbolic method (Said et al. 2011) focuses on helping programmers understand
how a data race can happen during program execution. The method uses symbolic analysis
to search for concrete thread schedules, which can deterministically trigger the data races,
among alternative interleavings of a given execution trace. The concrete thread schedules
can help programmers debug.

Rungta et al. (2009) find that exhaustive search techniques such as symbolic execution
are insufficient to detect bugs in concurrent programs. They present an abstraction-guided
symbolic execution technique that can quickly detect concurrency bugs. The techniques



870 Software Qual J (2018) 26:855–889

firstly identify an abstract system that contains a set of suspicious program locations that
may lead to an error state. Then the symbolic execution is guided along these locations to
generate an execution path to the error state. Wang et al. (2017) propose a new symbolic exe-
cution approach to detect faults without exploring redundant paths. This approach resolves
the path explosion problem brought by traditional symbolic execution and shows excellent
fault-detection ability.

(2) Model checking

Model checking is an effective way to analyze and test concurrent programs based on
state-space exploration algorithms. State-space exploration techniques usually explore a
directed graph, called the state space, which represents the combined behaviors of all con-
current components in a system (Godefroid 1997). Important properties such as deadlock
and liveness can be verified automatically using graph based model-checking algorithms. In
many cases, model checking is capable to find concurrency bugs even for complex systems
(Clarke et al. 1995; Boigelot and Godefroid 1996).

Among model checking methods, context-bounded analysis has made great contribu-
tion to concurrency bug detection. Bounding the number of context switches reduces the
complexity for analyzing concurrent programs. Qadeer and Rehof (2005) first propose a
theory of context-bounded model checking for concurrent programs. Their technique can
find any bugs within a bounded number of context switches. Similarly, Lal and Reps (2009)
present a method for reducing concurrent analysis under a context bound. Unlike Qadeer
and Rehof’s technique, their method can conduct context-bounded analysis with any given
context bound and with different program abstractions. Lahiri et al. (2009) use SMT solvers
and apply context-bounded analysis to concurrent C programs. This work eliminates the
complexity of Lal and Reps’s work (Lal and Reps 2009). It also finds a new bug in a set of
real-world programs during the evaluation process. Besides, some approaches (Rabinovitz
and Grumberg 2005) relies on bounding the number of contexts to address the complexity
and scalability problems of concurrent program analysis.

Besides context-bounded analysis, another way to solve the state explosion problem
is using partial order techniques. Wang et al. (2008) present a symbolic dynamic partial
order reduction (POR) method for model checking concurrent programs. This POR method
detects data races with less time compared to an existing method (Kahlon et al. 2006).
Besides, it can also remove all redundant interleavings in a two-thread concurrent program.

3.4 Conclusions of concurrency bug detection methods

In conclusion, static detection methods attempt to detect concurrency bugs by reasoning
about source code. Most of these methods employ compile-time analysis on the source code
and then report all potential races that could occur in any possible program execution. Static
methods cannot avoid excessive false positives because the compile-time analysis cannot
make a precise estimation of the possible bugs. Besides, static methods have bad scalability
because it is hard to analyze a large program entirely. For dynamic detection methods, they
discover bugs by monitoring particular execution of a program. Using dynamic methods
must execute the tested programs and record the history of its memory accesses and synchro-
nization operations for subsequent analysis. Since the history is in fact a feasible execution,
dynamic methods report lower false-positive rates than static ones. The happens-before and



Software Qual J (2018) 26:855–889 871

lockset algorithms are very important among dynamic methods. Those methods based on
happens-before relation are more precise and those lockset-based methods are more effi-
cient. Therefore, there are some dynamic detectors that combine happens-before and lockset
together to improve the efficiency and accuracy of detection results simultaneously.

Nevertheless, given the restriction that not all possible execution paths are executed and
recorded, dynamic methods are not sound and can hardly prove the nonexistence of concur-
rency bugs. As a result, many hybrid methods are proposed for better detection efficiency
and accuracy, also for a widely variety of concurrency bugs. Those hybrid methods may
take advantage of each individual method and show better performance.

Formal methods are quite different from static, dynamic, and other kinds of detection
techniques, and they are promising alternatives to the above-mentioned techniques. For-
mal methods have the advantage of improving the coverage of testing. However, they
have limitations on scalability due to the well-known state-explosion problem. As a result,
applying formal methods to large-scale programs is difficult, even though many reduction
and abstraction techniques are investigated. Besides, some other problems still cannot be
ignored. Model checking is expensive for concurrency bug detection. Symbolic execution
may cause false negatives if the exploration of paths is not sufficient. Nevertheless, if the
property that should be checked can be modeled in the program, symbolic execution would
not cause false negatives.

4 Automated concurrency bug avoidance

Concurrency program bugs are extremely difficult to be detected and fixed. Errors are often
hidden in rare memory access interleavings, so most of time we might only need to adopt
reasonable solutions to avoid concurrency bugs so that concurrency programs can run cor-
rectly without being affected by hidden bugs. The methods of avoiding concurrency bugs are
divided into three main categories and deadlock avoidance is usually discussed separately.
Rollback-replay is a widely used strategy used by different avoidance methods to avoid
and recover from concurrency bugs. As taking rollback-replay strategy, different avoid-
ance methods just differ from each other in the ways of how to go back to a re-execution
site and how to by-pass the failure during re-execution. Figure 9 illustrates the generalized
framework of rollback-replay approaches.

4.1 Adding synchronization

Adding synchronization is one of the common means to avoid concurrency bugs. By
adding synchronization, a code section will be executed with a certain order relationship as
expected and an atomic region will be executed atomically to avoid potential violations.

Fig. 9 The generalized framework of rollback-replay approaches



872 Software Qual J (2018) 26:855–889

Autolocker (Mccloskey et al. 2006) conducts lock insertion operations to get pessimistic
atomic sections, which refers to using locks to do concurrent control. The pessimistic atomic
sections determinately execute atomically without causing deadlocks and data races. How-
ever, Autolocker requires programmers to write annotations to make a connection between
locks and protected data. One of the closest algorithms to Autolocker is the data-centric
approach presented by Vaziri et al. (2006) because they both need manual assistance. It is
able to avoid not only traditional but also several high-level data races. This approach stati-
cally decides the right location for inserting synchronization to avoid data races. Similarly,
AtomRace (Letko et al. 2008) can also heal buggy programs by adding synchronization.
AtomRace is a simple and fully automated tool. It is used by an architecture for detecting
or even fixing atomicity violations and data races in run-time. After detecting the hid-
den data races, AtomRace adds synchronization to decrease the probability of data races
manifestation.

4.2 Forcing fixed execution order

This kind of method controls thread scheduling and forces programs execute following a
fixed order. They directly or indirectly influence thread scheduling and sometimes cause
much overhead.

Edelstein et al. (2001) describe a detecting tool and then implement a set of techniques
and integrate them into ConTest (Edelstein et al. 2003). ConTest can decrease the proba-
bility of data races manifestation. The key ideas of ConTest are to influence the scheduler
and to add synchronization actions to prevent data races. AtomRace (Letko et al. 2008) is
implemented based on the infrastructure of ConTest. For the healing part of AtomRace, they
try to add synchronization as well as influence the scheduler to control threads execution.
Although this does not mean to fix bugs, this can guarantee potential bugs only occurs with
a lower probability. But AtomRace is different from ConTest on noise injection for detect-
ing concurrency bugs. Their future work focuses on reducing the overhead introduced by
ConTest infrastructure and proposing new noise injection heuristics.

Although ConTest and AtomRace have made great progress on concurrency bug avoid-
ance, they still suffer from different problems, such as the limitation in working with
polymorphic input behavior and limitation in keeping the system reliable and available after
a fault occurs. To address these problems, ASSURE (Sidiroglou et al. 2009) is presented
by introducing rescue points, which are positions in existing code generated by fuzzing for
handling failures. The rescue points can recover a program from unknown faults. Similarly,
Frost (Veeraraghavan et al. 2011) can also survive the first occurrence of unknown bug.
Frost detects data races and controls thread scheduling to protect a program from data races
with complementary thread schedules.

In general, both ASSURE and Frost require checkpointing the whole program states and
once a failure occurs, all threads have to roll back. In order to avoid such sophisticated
changes to operating systems, Zhang et al. present ConAir. ConAir (Zhang et al. 2013) can
be used to help concurrent programs survive from bugs and fix bugs with temporary patches
as well. ConAir consists of three key parts: (1) statically identifying potential erroneous
code regions, (2) statically identifying the idempotent code regions around each bug, and
(3) inserting rollback code for recovery around the idempotent code regions. ConAir is able
to handle a large number of concurrency bugs.

To solve the limitations of software-only approaches, two techniques are proposed
with hardware support. Yu et al. (2009) describe a design for an interleaving constrained



Software Qual J (2018) 26:855–889 873

shared-memory multi-processor. This design aims to eliminate untested interleavings in
order to avoid concurrency bugs. They consider that untested interleavings may cause con-
currency bugs with a high probability, so they use Predecessor Set (PSet) to encode the set
of tested correct interleavings in a program’s binary executable. The evaluation with several
real-world programs shows that the system is able to avoid data races, atomicity violations,
and even some other concurrency bugs with different structures. Atom-Aid (Lucia et al.
2008) also needs help of hardware. It avoids atomicity violations by putting all memory
operations of an atomicity region inside the same chunk. It can smartly decide the right
location to insert a chunk boundary before the potential atomicity violation happens.

Furthermore, concurrency bug avoidance has special significance to the deployed
systems, which have a strict requirement against performance. However, those hardware-
dependent approaches may cause complex and expensive changes to hardware so that they
will induce excessive overhead. Aviso (Lucia and Ceze 2013) can overcome these chal-
lenges and avoid concurrency bugs caused by buggy execution scheduling. The system first
monitors the execution of a given program; once a failure happens, it will record a his-
tory of events and control the scheduling to avoid the same failure circumstance later in the
execution.

4.3 Software transaction memory

Software transaction memory (STM) treats shared memory accesses as transactions in order
to execute a set of operations in shared memory as a whole. When a concurrency bug is
detected, STM will roll back a transaction and discard memory updates to avoid bugs.

Transactional memory was first introduced by Herlihy et al. (1993). They want to make
lock-free synchronization as efficient as mutual exclusion. Their idea has many attractions,
but it would be hard to use the transactional memory directly because it needs identifi-
cation of transactional objects using a type system. As a result, Harris and Fraser (2003)
present a technique cooperating with the oldest proposals for concurrency control, Hoare’s
conditional critical regions (CCRs), to avoid concurrency bugs. They map CCRs to a STM
for allowing concurrency programs running without deadlocks. However, the previous two
studies both lack a function to judge whether a transaction needs to block or not. Harris
et al. (2005) then present a function called retry to solve this problem and propose a con-
currency model that addresses the problem of composing concurrency abstractions together.
Retry is a new modular form of blocking function and composes any blocking transactions
sequentially. Herlihy et al. (2006) propose DSTM2, which is a Java software library, and is
also a framework to implement object-based STM. DSTM2 provides a new kind of thread
to execute transactions and define methods, which can create new atomic classes. Com-
pared to previous STM implementations, which are implemented via changing compilers
and/or run-time systems, implementations based on DSTM2 are more flexible and easier to
distribute.

Ananian et al. (2006) propose unbounded transactional memory and the implementation
UTM based on the hardware transactional memory (HTM). They address the constraints in
HTM that are about transaction size restriction and also guarantee the efficiency of running
small transactions. Both HTM and UTM can be used to ensure atomicity in concurrency
programs and avoid bugs caused by locks. However, UTM adds a pointer to every memory
block and a linked-list log of reads and writes for its implementation. Consequently, UTM’s
implementation is too complex. Moore et al. then propose LogTM (Moore et al. 2006) to
address the limitations of UTM by developing a new and faster TM system. LogTM also



874 Software Qual J (2018) 26:855–889

improves the weakness of HTM in transactions size so that it can be applicable to large
transactions.

Grace (Berger et al. 2009) is a system to eliminate concurrency bugs at run time and
its key idea is to turn threads into processes. It implements STM and treats threads as pro-
cesses. Grace can make a concurrent program execute determinately and eliminate different
concurrency bugs through changing lock operation, committing state changes, and control-
ling threads execution. With the trend that multi-variable concurrency bugs become more
common than expected, there is a need for a general solution to avoid both single- and
multi-variable concurrency bugs. As a more general architecture that supports bug detec-
tion and avoidance together, ColorSafe (Lucia et al. 2010) dynamically detects and avoids
atomicity violations. It compares variables to colors and groups variables into colors. To
detect and avoid atomicity violations, ColorSafe monitors suspicious threads executions
which may cause atomicity violations and inserts ephemeral transactions to guard against
bugs.

4.4 Deadlock avoidance and recovery

Many researchers address deadlocks independent of other concurrency bugs because dead-
locks are caused by improper high-level synchronization while other concurrency bugs are
mainly caused by incorrect memory access orders. Therefore, we summarize the avoidance
strategy for deadlocks separately in this subsection and classify all of these approaches into
four types according to their different fixing mechanisms.

4.4.1 Type and effect system methods

Type and effect system statically enforce all threads to obey a global lock-acquisition order-
ing for deadlocks avoidance. Boudol (2009) present a type and effect system that is used to
create semantics to avoid deadlocks for a concurrent programming language. They define
deadlock-free semantics. This may not avoid deadlocks when non lexically scoped locking
operations are supported. To address the problems, Gerakios et al. (2011) propose a type and
effect system that can dynamically avoid deadlocks. The method first collects information
of the order of lock and unlock operations, then statically analyzes and computes the lock-
ing order. The information can guide the method to avoid deadlocks. Gordon et al. (2012)
present a technique called Lock capabilities. Unlike Gerakios et al.’s approach, lock capa-
bilities do not enforce a total order. It can be embedded in a type system used as locking
protocol for checking if a concurrent program is deadlock free. One feature of Lock capa-
bilities is that they allow concurrent programs to acquire locks with flexible orders so that
they are well suited for fine-grained locking.

4.4.2 Petri nets methods

Petri nets and control theory are also employed to analyze the whole program and some
control logic is inserted into programs to avoid deadlock. A project called Gadara Nets
(Wang et al. 2009) is a class of Petri nets and utilizes Petri nets to model concurrent pro-
grams. This method obtains information when programs are compiled to build Petri net
model. Then, Liao and Wang (2013) propose an optimization of ordinary Gadara Nets
in eliminating deadlocks with minimally restrictive control logic. They use Petri nets to



Software Qual J (2018) 26:855–889 875

model multithreaded programs. This method improves the correctness and guarantees the
efficiency and scalability compared to previous work.

4.4.3 Run-time methods

The last type of method usually detects and avoids deadlocks at run time. This type of
method is presented based on the observation that many bugs have a relation to the execution
environment so that run-time avoidance and recovery are more efficient. Qin et al. (2005)
present a technique called Rx for safe and transparent software bug detection. This tech-
nique can deal with a wider range of bugs than Gadara and its core idea is inspired by allergy
treatment in real life. If a deadlock is detected, the technique rolls back to a recent check-
point and executes the erroneous part again but with thread controlling based on the failure
pattern. The whole detection and recovery process are transparent, so Rx is safe enough.
Although Rx performs effectively and efficiently in recovering from software failures, it
still suffers from some weakness like false positives. One way to deal with this is to save
deadlock information and leverage this information to avoid those deadlocks during their
second occurrence. Therefore, Jula et al. propose an approach (Jula and Candea 2008; Jula
et al. 2008) based on deadlock immunity. Deadlock immunity describes a program’s ability
that can protect remaining code from deadlocks that have manifested and been caught in the
past observed executions. This approach can detect deadlocks when the tested program is
running and once a deadlock is detected, the approach will save the pattern of the deadlock
so that the approach controls thread scheduling to avoid the deadlock.

Grace (Berger et al. 2009) is also a run-time system. It forces concurrent threads to
execute determinately and sequentially based on a sequential commit protocol with virtual
memory protection. Moreover, it lets programs be deadlock-free by converting lock oper-
ations to no-ops. Sammati (Pyla and Varadarajan 2010), another run-time system with no
false positives or negatives, is a language-independent run-time system that automatically
detects and avoid deadlocks in concurrent programs. The whole process does not need any
manual operations or modification to the source code. The key point of Sammati is that
when every lock acquisition operation happens, Sammati leverages a deadlock detection
algorithm to check if there is a deadlock. If a deadlock is detected, the algorithm will roll
back to the lock acquisition, causing the deadlock and yield memory updates.

4.5 Conclusions of concurrency bug avoidance methods

In summary, concurrency bug avoidance faces many challenges and therefore a number
of methods have been proposed. Adding synchronization can avoid concurrency bugs dur-
ing compilation and bring a small negative impact on the original programs, but they rely
a lot on manual assistance or other detectors’ reports. Forcing a fixed thread execution
order directly or indirectly influences thread scheduling, causing much overhead. When
they indirectly influence thread scheduling, they just decrease the probability and danger
degree of concurrency bugs, which means that they cannot totally avoid bugs to some extent.
STM methods with low overhead would not be developed widely as they cannot handle
concurrency bugs with I/O operations.

For all of these four types of deadlock avoidance and recovery methods, each has their
own advantages and characteristics. Type-system methods cause less overhead but need
manual involvement to carry out the techniques. Effect system methods have a wider



876 Software Qual J (2018) 26:855–889

applicable range. Petri nets methods have high efficiency and correctness but bad scalability.
Instead, run-time systems are more flexible but they cause much overhead.

5 Automated concurrency bug fixing

Researchers have put a lot of effort into concurrency bug detection, exposing, and avoid-
ance. However, without fixing, it does not mean a real improvement of concurrent programs.
Consequently, concurrency-bug fixing is critical and challenging. Fixing operations may
also introduce new bugs with a high probability. A survey from Microsoft (Godefroid and
Nagappan 2008) shows that over 60% of the respondent have to deal with concurrency
issues on a monthly basis and most concurrency bugs are hard to fix. It often takes days
of work to analyze and fix a single concurrency bug. To fix concurrency bugs, developers
are faced with several challenges, such as determining the root causes of bugs, enforcing a
specific synchronization felicitously, and so on. The principles for ensuring the correctness
of fixing concurrency bugs are no introduction of new bugs, no significant degradation of
performance, and no severe sacrifice of code readability.

5.1 The framework of automated concurrency bug fixing

Many solutions for automatically fixing concurrency bugs have been proposed and eval-
uated by researchers. The whole process of automated concurrency bug fixing usually
involves the following four steps. Firstly, the concurrency fault must be located. After
reporting a concurrent bug, a fix strategy is proposed and patches for every single bug are
generated. Second, patches for a set of related bugs need to be merged and optimized for bet-
ter performance and readability. Third, each patch must be tested to make sure that it can fix
the buggy program correctly without introducing any new bugs. Last, good-quality patches
can be generated automatically. Figure 10 illustrates the framework of fixing approaches.

Fig. 10 The framework of fixing approaches



Software Qual J (2018) 26:855–889 877

5.2 Concurrency bug localization

The preliminary step of fixing concurrency bugs is to locate them. Some of the techniques
detect bugs by effective strategies, yet there are still some other techniques working with
existing effective concurrency-bug detectors to assist them. The concurrency bug detec-
tors provide bug reports including interleavings, which induce program failures, to fix
techniques as a basis of fixing process.

Prvulovic and Torrellas show that the rollback capabilities of Thread-Level Speculation
(TLS) can be extended to support rolling back buggy executions and characterizing bugs.
They introduce ReEnact (Prvulovic and Torrellas 2003), a TLS-based debugging frame-
work, which is able to detect, characterize, and repair data races. Its core idea of detecting
data races is using TLS to check if two thread slices are unordered. ReEnact makes a try to
possibly repair data races, then Krena et al. (2007) propose an algorithm for healing data
races on-the-fly. They use Eraser algorithm to firstly detect data races. The main principle
of Eraser algorithm is that for each variable the Eraser algorithm maintains its state and
the set of candidate locks. When there is a shared variable and the set of candidates locks
becomes empty, the algorithm can detect a race. Similar to Křena et al.’s work, some subse-
quent approaches also find bug root causes with some other tools. AFix (Jin et al. 2011) uses
CTrigger (Park et al. 2009; Lu et al. 2011b) bug reports to discover atomicity variable. AFix
even modifies CTrigger to output all possible combinations of atomicity-violation triples
and the complete call stack for each atomicity-violation related statements. On the basis
of AFix, CFix (Jin et al. 2012) aims at automatically fixing different types of concurrency
bugs. Similar to AFix, it continues the fixing process with the help of bug reports that just
need to report the execution order of bug-related code.

AFix and CFix both attempt to fix existing concurrency bugs, nevertheless, Weeratunge
et al. (2011) propose a technique that can fight against unknown concurrency bugs. The
technique first analyzes a set of traces and for each pair of consecutive memory accesses of
the local thread, they check if accesses from a remote thread interleave the pair of accesses.
If it does, an atomicity violation is detected. The above techniques all operate on byte-
code or the programs’ original source to detect bugs. Different from these techniques, Raft
(Smith 2013) performs on programs’ machine code with minimal higher-level knowledge
of programs’ structure or environment. Raft consists of a list of techniques for discovering,
characterizing, reproducing, and fixing concurrency bugs. Raft verifies potential bugs by
representing all instructions involved in a crash as a dynamic Control Flow Graph (CFG)
and get approximate instructions from the CFG by reverse engineering. After analyzing the
difference between approximates and crashes, a verification condition will be achieved. For
more general applications with little manual effort, ConcBugAssist (Khoshnood et al. 2015)
is presented as a diagnosing and repairing tool for concurrent programs. Giving a buggy
concurrent program, ConcBugAssist uses a symbolic analysis method to compute a set of
minimal inter-thread ordering constraints that cause violations. The set may be treated as
the precondition of bug fixing.

5.3 Fix-strategy planning and implementation

The next step is fix-strategy planning and implementation. Different kinds of concurrency
bugs need different strategies to fix them. Fix strategies include many manners aiming at
eliminating erroneous interleaving patterns to make concurrent programs be fixed correctly.



878 Software Qual J (2018) 26:855–889

Based on the fix strategies, fix techniques then decide how to implement the strategies and
enforce synchronization properly.

Isolation in concurrent programs can guarantee that unexpected interleavings between
threads will not occur and induce program failures. For a concurrent program, ISOLATOR
(Rajamani et al. 2009) helps to detect and avoid isolation violations with a locking dis-
cipline and a set of threads that obey the locking discipline. It associates every lock and
exploits page protection to guarantee isolation. Based on the experience with Gadara (Wang
et al. 2009), Kelly et al. find that discrete control theory is helpful in solving concurrency
problems. They (Kelly 2009) use control engineering to address the challenges of fixing
concurrency bugs. Inspired by the great use of genetic programming in sequential software
debugging, Bradbury and Jalbert (2010) use genetic programming to fix concurrency bugs
in an incremental manner. They mutate the program at every generation and use a fitness
function to compare the mutation with the parent program and choose part of mutations into
the next generation.

As a totally automated fixing tool, AFix (Jin et al. 2011) focuses on fixing single-variable
atomicity violations. With the help of bug reports from CTrigger, AFix firstly defines a
triplet (p, c, r), where p (preceding), and c (current) from local threads are interleaved
by r (remote) from remote threads. AFix further identifies atomicity violations by a set of
(p, c, r) triples. Then, AFix puts p and c into a critical region and put r into another one
so that the two regions are protected by a lock respectively which is mutually exclusive
with each other. With the information of failure-inducing interleaving, for different types of
concurrency bugs such as atomicity violations, order violations, data races, and abnormal
def-use problems, CFix (Jin et al. 2012) enforce mutual exclusion for mutual-exclusion
problems and all A-B and first A-B order relationships for order problems. Liu et al. evaluate
AFix on large real systems and declare that AFix may incur degraded performance and
deadlocks. Then they present Axis (Liu and Zhang 2012) to fix atomicity violations by first
making a Petri net model for a buggy program, then encoding the Petri net and erroneous
statements as a set of control constraints. Finally, an augmented Petri net is generated that
matches the patched code that we want.

To reduce the nondeterminacy of concurrent programs, Huang and Zhang (2012) pri-
vatize the shared data races using a path and context-sensitive execution privatization
technique to alleviate concurrency problems. Previous techniques are context oblivious
focusing only on the buggy statements and ignoring the context. It is nontrivial for Grail
(Liu et al. 2014a) to realize such context-aware bug fixing. Grail fixes concurrency bugs
with both correctness and optimality guarantees because it simultaneously synthesizes and
optimizes lock-based synchronization. Grail takes both the incorrect statements and context
into consideration. Joshi and Lal (2014) infer atomic code regions for fixing bugs. They
assume that if a program’s threads are not interleaved by any thread, the program is correct.
Their inferring process is based on this assumption.

Some techniques conduct different studies for better fixing results. Yin et al. (2011) con-
duct a characteristic study on incorrect bug fixes from real-world large programs. They find
that there are at least 14.8– 24.4% incorrect fixes which programmers and reviewers usu-
ally have no good solutions to deal with. After making an empirical study of real-world
concurrency bugs, Cěrný et al. discover that most previous fixing techniques differ a lot
from the strategies used by programmers. To be more practical, Černỳ et al. (2013) use pro-
gram synthesis to explore different kinds of program transformations without sacrificing
program semantics and remove bugs taken partial-order traces as counterexamples. Further-
more, they present another synthesis algorithm (Černỳ et al. 2014) to avoid introducing new



Software Qual J (2018) 26:855–889 879

concurrency bugs by repair algorithms. According to a set of good traces and bad traces
of program execution, the algorithm learns the constraints which can be used to eliminate
the bad traces. In order to generate patches with high quality, Liu et al. (2016) first study
77 manual patches for real-world concurrency bugs and design fix strategies guided by
the study results. After having a better understanding of patching concurrency bugs, they
propose HFix that adds thread-join operations to enforce order relationship and leverage
existing synchronization operations to fix order problems and atomicity violations. These
two strategies generate better and simpler patches than prior techniques.

5.4 Patch verification and optimization

The third step is patch verification and optimization. Fix techniques first generate patches
for every single bug. Then, a lot of candidate patches need to be tested and selected for
their performance in correctness, overhead costing, and readability. Besides, a set of patches
of related bugs can also be merged to improve the simplicity of patches and decrease the
probability of introducing deadlocks.

Bug reports usually include multiple bugs that cause program failures. For all bugs in
reports, AFix (Jin et al. 2011) designs a patch for each of them. Thus, AFix tries to remove
redundant patches and merge related patches to improve code readability, program perfor-
mance, and correctness, as well as reducing deadlock risk. In addition, all patches generated
by AFix need to be verified twice. The first one is verified by CTrigger to check whether
the bug has been fixed. The second verification is implemented by AFix for checking if
a patch is able to fix bugs. CFix (Jin et al. 2012) tests patches by first checking the cor-
rectness through static analysis and interleaving testing, then comparing the performance
for all patches passing correctness testing, finally observing timeout issue for deadlock
detection.

For a wider variety of bugs, Kelk et al. (2013) propose ARC, which can repair deadlocks
and data races automatically for concurrent Java programs. Because there may be some
unnecessary synchronization inserted by accident, ARC conducts an optimization after a
fix operation to improve the performance of the program. They use a fitness function to
compute the degree of improvement with respect to program running time and number
of context switches. After a core part of the algorithm, Flint (Liu et al. 2014b) performs
optimizations for performance with no harm to correctness. Optimizations hold the key idea
of fast-path to promote the minimal implementation of Flint, which consists of only one
Map operation. After optimizing, the code will be more efficient than before. HFix (Liu
et al. 2016) first analyzes a lot of manual patches for real-world concurrency bugs in detail.
Based on the analysis, it automatically fixes concurrency bugs guided by empirical study
findings. Finally, HFix merges at least two patches, which are applied the same fix strategy.

5.5 Automated deadlock fixing

A program will be blocked when a deadlock occurs. Among all the methods we have intro-
duced above to automatically fix concurrency bugs, the majority of them need to insert new
locks into original programs for concurrency-bug fixing. Inserting new locks can fix some
non-deadlock concurrency bugs by serializing those threads that are related to these bugs.
On the other hand, it may also introduce new deadlock instead of fixing deadlock bugs. As
a result, a few techniques, which only focus on deadlock fixing, are proposed and evaluated
well on real-world programs.



880 Software Qual J (2018) 26:855–889

Jula et al. (2008) present a technique by which a concurrent program can be defended
against deadlocks after they are detected at the first time. When a deadlock appears for
the first time, the technique records the erroneous interleaving patterns, then it avoids the
manifestation of the buggy patterns by inserting instrumentation codes. Nirbuchbinder et al.
(2008) aim to protect concurrency programs from deadlocks. The key idea is to force a
sequential execution of the code regions involved in deadlocks. After summarizing the
limitations of previous techniques on handling deadlocks which can not scale to large
applications and have high overhead, Cai et al. (2013) plan to implement an active lock
assignment, which refers to making a thread acquire the corresponding lock when they are
involved in a deadlock. This strategy enables a thread involved in a deadlock to pre-acquire a
corresponding lock, which can avoid a circular waiting blocking the program. In the follow-
on work, Cai and Cao (2016) present an approach DFixer to pre-acquire a lock so as to
break one necessary condition of a deadlock. The experimental results show that DFixer can
successfully fix all 20 deadlocks.

5.6 Conclusions of concurrency bug-fixing methods

Concurrency bug fixing becomes capable for all common types of concurrency bugs. Ana-
lyzing the root cause of concurrency bugs is the first important step of fixing them. The
analyzing results’ accuracy and correctness may directly influence the fixing results. Fix
strategies should be directed against bug types and the implementation should decide where
and how to enforce the strategies so as to generate patches. Patch testing and optimizing
aims at getting the best patch considering program correctness, performance, and patch
simplicity. All steps link with each other and fuse into the integrity throughout the whole
process of automated concurrency bug fixing.

6 Benchmark summary

Most automated concurrency bug exposing, detection, avoidance, and fixing methods use
real-world programs for empirical study and evaluation. After analyzing the collected
papers, we conclude the benchmarks that are the most actively used by researchers (at
least eight times) as shown in Table 1. Table 1 lists the program name, programming
language, line of code, cumulative usage count, and related literature for each of the bench-
marks. The benchmarks come from different areas, ranging from data-centric applications,
long-running applications, computation-centric applications, to web-centric applications.

7 The active research groups and their contribution

This section summarizes the active research groups in the field of concurrency bug exposing,
detection, avoidance, and fixing in alphabetic order of their names.

7.1 Cai et al.

Cai et al. made many contributions on deadlocks detection, testing, and fixing. They con-
centrate on the research on deadlocks and present a lot of excellent research achievement.



Software Qual J (2018) 26:855–889 881

Table 1 Benchmarks used by different methods (LOC means lines of code)

Program Language LOC Usage count Related literatures

MySQL C 1900k 30 Cai and Cao (2016), Cai and Chan (2012), Cai and Lu
(2016), Cai et al. (2014), Cai and Chan (2014), Chew
(2009), Jin et al. (2011), Jin et al. (2012), Khosh-
nood et al. (2015), Liu et al. (2016), Lu et al. (2007),
Lu et al. (2007), Lu et al. (2011a), Lu et al. (2011b),
Lucia et al. (2008), Lucia et al. (2010), Lucia et al.
(2011), Park et al. (2009), Park et al. (2012), Qin et al.
(2005), Shi et al. (2010), Veeraraghavan et al. (2011),
Weeratunge et al. (2011), Xu et al. (2005) and Yu
and Narayanasamy (2009), Yu et al. (2012), Zhang
et al. (2016), Zhang et al. (2013), Zhang et al. (2011),
Zhang et al. (2010)

Apache C 345k 22 Chew (2009), Jin et al. (2011), Jin et al. (2010), Jin
et al. (2012), Kasikci et al. (2013), Khoshnood et al.
(2015), Liu et al. (2016), Lu et al. (2011b), Lu et al.
(2007), Lucia et al. (2010), Lucia et al. (2008), Lucia
et al. (2011), Park et al. (2009), Qin et al. (2005), Shi
et al. (2010), Veeraraghavan et al. (2011), Weeratunge
et al. (2011), Xu et al. (2005), Yu and Narayanasamy
(2009) and Yu et al. (2012), Zhang et al. (2016),
Zhang et al. (2010)

Mozilla C 3400k 18 Burckhardt et al. (2010), Jin et al. (2011), Jin et al.
(2010), Jin et al. (2012), Khoshnood et al. (2015), Liu
et al. (2016), Lu et al. (2007), Lu et al. (2007), Lu
et al. (2011a), Lucia et al. (2010), Lucia et al. (2011),
Park et al. (2009) and Shi et al. (2010), Weeratunge
et al. (2011), Yu and Narayanasamy (2009), Zhang
et al. (2013), Zhang et al. (2011), Zhang et al. (2010)

Pbzip2 C++ 2k 18 Burckhardt et al. (2010), Jin et al. (2011), Jin et al.
(2010), Jin et al. (2012), Kasikci et al. (2013), Kasikci
et al. (2015), Liu et al. (2016), Lu et al. (2011b), Lucia
et al. (2011), Park et al. (2009), Park et al. (2012), Shi
et al. (2010), Veeraraghavan et al. (2011), Weeratunge
et al. (2011), Yu and Narayanasamy (2009), Yu et al.
(2012), Zhang et al. (2016), Zhang et al. (2010)

FFT C 1.2k 10 Jin et al. (2011), Jin et al. (2010), Jin et al. (2012),
Liu et al. (2016), Lu et al. (2011b), Park et al. (2009),
Zhang et al. (2010), Zhang et al. (2016), Zhang et al.
(2013), Zhang et al. (2011)

SQLite C 67k 8 Cai and Cao (2016), Cai and Chan (2012), Cai and
Chan (2014), Cai and Lu (2016), Cai et al. (2014),
Kasikci et al. (2013), Kasikci et al. (2015), Zhang
et al. (2013)

Transmission C 95k 8 Jin et al. (2012), Khoshnood et al. (2015), Liu et al.
(2016), Shi et al. (2010), Zhang et al. (2016), Zhang
et al. (2013), Zhang et al. (2011), Zhang et al. (2010)

Aget C 1.2k 8 Kasikci et al. (2013), Lucia et al. (2010), Lucia et al.
(2011), Park et al. (2012), Weeratunge et al. (2011),
Yu and Narayanasamy (2009), Yu et al. (2012), Zhang
et al. (2011)



882 Software Qual J (2018) 26:855–889

They proposed MagicFuzzer (Cai and Chan 2012), Magiclock (Cai and Chan 2014), and
other deadlock detectors especially for large-scale concurrent programs. Their latest work,
DFixer (Cai and Cao 2016), shows very prominent performance on deadlock fixing.

7.2 Flanagan et al.

These authors studied a lot on data race and atomicity violation detection. They also gave a
series of construction methods. They presented a type system (Flanagan and Freund 2000)
for catching race conditions statically and described rccjava, an implementation of this
system for Java. They later presented a sound and complete atomicity checker that finds and
checks atomicity violations found by other tools.

7.3 Huang, Liu, and Zhang et al.

This research group has worked in avoiding and fixing different kinds of concurrency bugs.
They presented Axis (Liu and Zhang 2012), Flint (Liu et al. 2014b), and Grail (Liu et al.
2014a), a set of useful algorithms and tools for automatically fixing concurrency bugs. Flint
is the first general algorithm for automatically transforming nonlinearizable compositions
of Map operations into atomic compositions.

7.4 Lu et al.

Lu et al. work in many fields of dealing with concurrency bugs, including concurrency bug
exposing, detection, recovery, prevention, and fixing. They used data-mining techniques
to detect and fix concurrency bugs (Lu et al. 2007; Liu et al. 2016). Aiming at different
types of concurrency bugs, they presented a set of automated fixing tools, such as AFix
(Jin et al. 2011), CFix (Jin et al. 2012), and HFix (Liu et al. 2016). Their study on real-
world concurrency bug characteristics (Lu et al. 2008) provides a comprehensive study of
real-world concurrency bugs, examining their pattern, manifestation, fix strategy, and other
characteristics. A lot of research benefits from their work in various aspects.

7.5 Lucia et al.

These authors made an outstanding contribution to concurrency bug avoidance. They pro-
posed Atom-Aid (Lucia et al. 2008). It is the first approach using chunk boundaries to avoid
atomicity violations. They also proposed ColorSafe (Lucia et al. 2011), an architecture that
provides dynamic bug avoidance for a wide variety of bugs, and Aviso (Lucia and Ceze
2013), a software-only system that avoids concurrency failures by empirically determining
fault-free execution schedules.

7.6 Park et al.

Park et al. contributed to the fault localization of concurrent programs. They proactively
located concurrency bugs through shared memory access patterns and they presented Fal-
con, the first technique to both report and rank patterns. They later presented UNICORN,
the first unified technique that detects and ranks non-deadlock concurrency bugs using pat-
terns. UNICORN is based on Falcon and extends detection ability from single-variable
concurrency bugs to both single- and multi-variable concurrency bugs.



Software Qual J (2018) 26:855–889 883

8 Conclusions and future work

Over the last couple of decades, concurrency bugs have been widely studied and a lot of
significant research efforts have been devoted. An increasing number of researchers have
paid their attention to concurrency bugs, such as concurrency-bug exposing, detection,
avoidance, and fixing.

In this article, we make three major contributions: (1) After performing a literature review
of more than 100 papers, we make a complete and systematic survey for dealing with con-
currency bugs, from concurrency bug exposing, detection, avoidance, to fixing; (2) We
summarize the whole process of dealing with concurrency bugs into four main processes
according to the difficulty of the procedures. For each process, we survey the key issues,
challenges, and the state of art; (3) We summarized the classical benchmarks and active
research groups in this active research topic.

Based on our study, we point out a number of research directions on concurrency bug
problems in the future:

(1) Deterministic execution is critical to concurrent programs. The non-determinacy of
concurrent programs increase the difficulty of reproducing bugs. When a bug is
exposed in an execution, we hope it can be exposed with the same input the next time.
This will make it much more efficient to detect and expose concurrency bugs.

(2) More efficient techniques for recording and replaying concurrent programs need to be
developed. The execution with specific interleaving scheme of a concurrent program is
the key for dealing with concurrency bugs from detection to fixing. We need to record
the executions and replay any one of them for study.

(3) Due to the huge state space for the thread interleavings, there is a strong need for more
effective detection and fixing techniques. Firstly, some detection and fixing techniques
for traditional bugs could be cooperated to deal with concurrency bugs. On the other
hand, we will explore some new methods based on the features of concurrency bugs.

(4) More empirical studies on real concurrency bugs should be conducted and these bugs
should be employed to enrich the benchmark suite. Before studying real bugs, more
tools should be designed to automatically extract bugs from concurrency bug data-
bases. This would facilitate programmers to understand the root cause of concurrency
bugs after mining bug repositories and finding some patterns from these bugs.

(5) Another fruitful research area in concurrency bugs is cooperating software and hard-
ware. Software-only systems are applicable for different platforms, but may have
a negative influence on program performance. Some systems modify hardware to
improve efficiency with bad applicability and generality. We can propose some
methods to combine hardware and software to take full advantage of them.

Acknowledgements This work is partly supported by projects from National Natural Science Foundation
of China, with the project number ‘61202030’, ‘71502125’, ‘61373012’, and ‘61202006’. The authors also
thank anonymous reviewers for their constructive comments.

References

Abadi, M., Flanagan, C., & Freund, S.N. (2006). Types for safe locking: static race detection for Java. ACM
Transactions on Programming Languages and Systems (TOPLAS), 28, 207–255.



884 Software Qual J (2018) 26:855–889

Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., & Lie, S. (2006). Unbounded transactional
memory. In International conference on high-performance computer architecture (pp. 59–69).

Berger, E.D., Yang, T., Liu, T., & Novark, G. (2009). Grace: Safe multithreaded programming for C/C++. In
ACM Sigplan Notices, (Vol. 44 pp. 81–96): ACM.

Boigelot, B., & Godefroid, P. (1996). Model checking in practice: an analysis of the access.bus protocol using
spin. In Proceedings of the 3rd international symposium of formal methods Europe on industrial benefit
and advances in formal methods (pp. 465–478).

Boudol, G. (2009). A deadlock-free semantics for shared memory concurrency. In International colloquium
on theoretical aspects of computing (pp. 140–154).

Bradbury, J.S., & Jalbert, K. (2010). Automatic repair of concurrency bugs. In International symposium on
search based software engineering (pp. 1–2).

Bron, A., Farchi, E., Magid, Y., Nir, Y., & Ur, S. (2005). Applications of synchronization coverage. In Pro-
ceedings of the 10th ACM SIGPLAN symposium on principles and practice of parallel programming
pp. (206–212). ACM.

Burckhardt, S., Kothari, P., Musuvathi, M., & Nagarakatte, S. (2010). A randomized scheduler with
probabilistic guarantees of finding bugs. ACM Sigplan Notices, 45, 167–178.

Cadar, C., Dunbar, D., & Engler, D. (2008). Klee: unassisted and automatic generation of high-coverage tests
for complex systems programs. In Usenix symposium on operating systems design and implementation,
OSDI 2008 (pp. 209–224). California, USA: Proceedings.

Cai, Y., & Cao, L. (2016). Fixing deadlocks via lock pre-acquisitions. In Proceedings of the 38th international
conference on software engineering (pp. 1109–1120). ACM.

Cai, Y., & Chan, W.K. (2012). Magicfuzzer: scalable deadlock detection for large-scale applications. In
International conference on software engineering (pp. 606–616).

Cai, Y., & Chan, W.K. (2014). Magiclock: scalable detection of potential deadlocks in large-scale multi-
threaded programs. IEEE Transactions on Software Engineering, 40, 266–281.

Cai, Y., & Lu, Q. (2016). Dynamic testing for deadlocks via constraints. IEEE Transactions on Software
Engineering, 42(9), 825–842.

Cai, Y., Chan, W.K., & Yu, Y.T. (2013). Taming deadlocks in multithreaded programs. In International
conference on quality software (pp. 276–279).

Cai, Y., Wu, S., & Chan, W. (2014). Conlock: a constraint-based approach to dynamic checking on deadlocks
in multithreaded programs. In Proceedings of the 36th international conference on software engineering
(pp. 491–502). ACM.

Černỳ, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., & Tarrach, T. (2013). Efficient synthesis
for concurrency by semantics-preserving transformations. Lecture Notes in Computer Science (pp.
951–967).

Černỳ, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., & Tarrach, T. (2014). Regression-free synthesis
for concurrency. In International conference on computer aided verification (pp. 568–584). Springer.

Chew, L. (2009). A system for detecting, preventing and exposing atomicity violations in multithreaded
programs. University of Toronto.

Chew, L., & Lie, D. (2010). Kivati: fast detection and prevention of atomicity violations. In European con-
ference on computer systems, proceedings of the European conference on computer systems, EUROSYS
2010 (pp. 307–320). Paris, France.

Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., & Sridharan, M. (2002). Efficient and precise
datarace detection for multithreaded object-oriented programs. ACM Sigplan Notices, 37, 258–269.

Clarke, E.M., & Wing, J.M. (1996). Formal methods: State of the art and future directions. ACM Computing
Surveys, 28, 626–643.

Clarke, E.M., Grumberg, O., Hiraishi, H., Jha, S., Long, D.E., McMillan, K.L., & Ness, L.A. (1995).
Verification of the futurebus+ cache coherence protocol. Formal Methods in System Design, 6(2),
217–232.

Deng, D., Zhang, W., & Lu, S. (2013). Efficient concurrency-bug detection across inputs. ACM Sigplan
Notices, 48, 785–802.

Deng, D.D., Jin, G.L., Marc, D.K., Ang, L.I., Ben, L., Shan, L.U., Shanxiang, Q.I., Ren, J.L., Karthikeyan,
S., & Song, L.H. (2015). Fixing, preventing, and recovering from concurrency bugs. Science China
Information Sciences, 58, 1–18.

Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., & Ur, S. (2001). Multithreaded Java program test generation.
In Joint ACM-iscope conference on Java grande (pp. 111–125).

Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., & Ur, S. (2003). Framework for testing multi-
threaded Java programs. Concurrency and Computation: Practice and Experience, 15, 485–499.

Engler, D.R., & Ashcraft, K. (2003). Racerx: effective, static detection of race conditions and deadlocks. In
ACM SIGOPS operating systems review (Vol. 37, 237–252). ACM.



Software Qual J (2018) 26:855–889 885

Flanagan, C., & Freund, S.N. (2000). Type-based race detection for Java. ACM Sigplan Notices, 35, 219–232.
Flanagan, C., Freund, S.N., & Yi, J. (2008). Velodrome: a sound and complete dynamic atomicity checker

for multithreaded programs. ACM SIGPLAN Notices, 43(6), 293–303.
Gerakios, P., Papaspyrou, N., & Sagonas, K. (2011). A type and effect system for deadlock avoidance in low-

level languages. In Proceedings of the 7th ACM SIGPLAN workshop on types in language design and
implementation (pp. 15–28). ACM.

Godefroid, P. (1997). Model checking for programming languages using VeriSoft. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on principles of programming languages (pp. 174–186).

Godefroid, P., Klarlund, N., & Sen, K. (2005). Dart: Directed automated random testing. In Proceedings of the
2005 ACM SIGPLAN conference on programming language design and implementation (pp. 213–223).

Godefroid, P., & Nagappan, N. (2008). Concurrency at Microsoft: An exploratory survey. In CAV workshop
on exploiting concurrency efficiently and correctly.

Gordon, C.S., Ernst, M.D., & Grossman, D. (2012). Static lock capabilities for deadlock freedom. In Proceed-
ings of the 8th ACM SIGPLAN workshop on types in language design and implementation (pp. 67–78).
ACM.

Harris, T., & Fraser, K. (2003). Language support for lightweight transactions. ACM Sigplan Notices, 38,
388–402.

Harris, T., Marlow, S., Peyton-Jones, S., & Herlihy, M. (2005). Composable memory transactions. In Pro-
ceedings of the 10th ACM SIGPLAN symposium on principles and practice of parallel programming
(pp. 48–60). ACM.

Herlihy, M., Eliot, J., & Moss, B. (1993). Transactional memory: architectural support for lock-free data
structures. In International symposium on computer architecture (pp. 289–300).

Herlihy, M., Luchangco, V., & Moir, M. (2006). A flexible framework for implementing software transac-
tional memory. ACM Sigplan Notices (p. 41).

Huang, J., & Zhang, C. (2012). Execution privatization for scheduler-oblivious concurrent programs. In
ACM international conference on object oriented programming systems languages and applications
(pp. 737–752).

Jin, G., Thakur, A., Liblit, B., & Lu, S. (2010). Instrumentation and sampling strategies for cooperative
concurrency bug isolation. ACM Sigplan Notices, 45, 241–255.

Jin, G., Song, L., Zhang, W., Lu, S., & Liblit, B. (2011). Automated atomicity-violation fixing. ACM Sigplan
Notices, 46, 389–400.

Jin, G., Zhang, W., Deng, D., Liblit, B., & Lu, S. (2012). Automated concurrency-bug fixing. In Usenix
conference on operating systems design and implementation (pp. 221–236).

Joshi, S., & Lal, A. (2014). Automatically finding atomic regions for fixing bugs in concurrent programs.
Computing Research Repository.

Joshi, P., Park, C.S., Sen, K., & Naik, M. (2009). A randomized dynamic program analysis technique for
detecting real deadlocks. ACM Sigplan Notices, 44, 110–120.

Joshi, P., Naik, M., Sen, K., & Gay, D. (2010). An effective dynamic analysis for detecting generalized
deadlocks. In ACM sigsoft international symposium on foundations of software engineering (pp. 327–
336). NM, USA.

Jula, H., & Candea, G. (2008). A scalable, sound, eventually-complete algorithm for deadlock immunity. In
International workshop on runtime verification (pp. 119–136). Springer.

Jula, H., Tralamazza, D., Zamfir, C., & Candea, G. (2008). Deadlock immunity: enabling systems to defend
against deadlocks. In Proceedings of the 8th USENIX conference on operating systems design and
implementation (pp. 295–308). USENIX Association.

Kahlon, V., Gupta, A., & Sinha, N. (2006). Symbolic model checking of concurrent programs using par-
tial orders and on-the-fly transactions. In International conference on computer aided verification
(pp. 286–299).

Kasikci, B., Zamfir, C., & Candea, G. (2013). Racemob: crowdsourced data race detection. In Twenty-Fourth
ACM symposium on operating systems principles (pp. 406–422).

Kasikci, B., Zamfir, C., & Candea, G. (2015). Automated classification of data races under both strong and
weak memory models. ACM Transactions on Programming Languages & Systems, 37, 1–44.

Kelk, D., Jalbert, K., & Bradbury, J.S. (2013). Automatically repairing concurrency bugs with arc. In
International conference on multicore software engineering, performance, and tools (pp. 73–84).
Springer.

Kelly, T. (2009). Eliminating concurrency bugs with control engineering. Computer, 42, 52–60.
Khoshnood, S., Kusano, M., & Wang, C. (2015). Concbugassist: constraint solving for diagnosis and repair of

concurrency bugs. In Proceedings of the 2015 international symposium on software testing and analysis
(pp. 165–176). ACM.



886 Software Qual J (2018) 26:855–889

Krena, B., Letko, Z., Tzoref, R., Ur, S., & Vojnar, T. (2007). Healing data races on-the-fly. In Proceedings
of the 2007 ACM workshop on parallel and distributed systems: testing and debugging (pp. 54–64).
ACM.

Kundu, S., Ganai, M.K., & Wang, C. (2010). Contessa: concurrency testing augmented with symbolic analy-
sis. In Computer aided verification, international conference, CAV 2010 (pp. 127–131). Edinburgh, UK:
Proceedings.

Lahiri, S.K., Qadeer, S., & Rakamarić, Z. (2009). Static and precise detection of concurrency errors in sys-
tems code using SMT solvers. In Proceedings of the 21st international conference on computer aided
verification (pp. 509–524).

Lal, A., & Reps, T. (2009). Reducing concurrent analysis under a context bound to sequential analysis.
Formal Methods in System Design, 35, 73–97.

Letko, Z., Vojnar, T., & Křena, B. (2008). Atomrace: data race and atomicity violation detector and healer. In
Proceedings of the 6th workshop on parallel and distributed systems: testing, analysis, and debugging
(pp. 7:1–7:10). ACM.

Liao, H., & Wang, Y. (2013). Eliminating concurrency bugs in multithreaded software: a new approach based
on discrete-event control. IEEE Transactions on Control Systems Technology, 21, 2067–2082.

Liu, P., & Zhang, C. (2012). Axis: Automatically fixing atomicity violations through solving control con-
straints. In Proceedings of the 34th international conference on software engineering (pp. 299–309).
IEEE Press.

Liu, P., Tripp, O., & Zhang, C. (2014). Grail: context-aware fixing of concurrency bugs. In Proceedings of the
22nd ACM SIGSOFT international symposium on foundations of software engineering (pp. 318–329).
ACM.

Liu, P., Tripp, O., & Zhang, X. (2014). Flint: fixing linearizability violations. ACM Sigplan Notices, 49,
543–560.

Liu, H., Chen, Y., & Lu, S. (2016). Understanding and generating high quality patches for concurrency bugs.
In Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering (pp. 715–726). ACM.

Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., & Zhou, Y. (2007). MUVI: automatically
inferring multi-variable access correlations and detecting related semantic and concurrency bugs. ACM
Sigops Operating Systems Review, 41, 103–116.

Lu, S., Tucek, J., Qin, F., & Zhou, Y. (2007). Avio: detecting atomicity violations via access-interleaving
invariants. IEEE Micro, 27, 26–35.

Lu, S., Park, S., Seo, E., & Zhou, Y. (2008). Learning from mistakes: a comprehensive study on real-world
concurrency bug characteristics. In International conference on architectural support for programming
languages and operating systems, ASPLOS 2008 (pp. 329–339). WA, USA.

Lu, S., Park, S., & Zhou, Y. (2011). Detecting concurrency bugs from the perspectives of synchronization
intentions. IEEE Transactions on Parallel and Distributed Systems, 23, 1060–1072.

Lu, S., Park, S., & Zhou, Y. (2011). Finding atomicity-violation bugs through unserializable interleaving
testing. IEEE Transactions on Software Engineering, 38, 844–860.

Lucia, B., & Ceze, L. (2013). Cooperative empirical failure avoidance for multithreaded programs. In ACM
SIGPLAN notices (Vol. 48, pp. 39–50). ACM.

Lucia, B., Devietti, J., Strauss, K., & Ceze, L. (2008). Atom-aid: detecting and surviving atomicity violations.
IEEE Micro, 29, 73–83.

Lucia, B., Ceze, L., & Strauss, K. (2010). Colorsafe: architectural support for debugging and dynamically
avoiding multi-variable atomicity violations. ACM SIGARCH Computer Architecture News, 38, 222–
233.

Lucia, B., Wood, B.P., & Ceze, L. (2011). Isolating and understanding concurrency errors using reconstructed
execution fragments. ACM Sigplan Notices, 46, 378–388.

Michael, C.H. (1997). Why engineers should consider formal methods. Technical report, NASA Langley
Technical Report Server.

Mccloskey, B., Zhou, F., Gay, D., & Brewer, E. (2006). Autolocker: synchronization inference for atomic
sections. ACM Sigplan Notices, 41, 346–358.

Moore, K., Bobba, J., Moravan, M.J., & Hill, M. (2006). Logtm: log-based transactional memory. HPCA,
27, 254–265.

Musuvathi, M., & Qadeer, S. (2007). Iterative context bounding for systematic testing of multithreaded
programs. ACM Sigplan Notices, 42, 446–455.

Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., & Neamtiu, I. (2008). Finding and repro-
ducing Heisenbugs in concurrent programs. In Usenix symposium on operating systems design and
implementation, OSDI 2008 (pp. 267–280). California, USA: Proceedings.



Software Qual J (2018) 26:855–889 887

Naik, M., & Aiken, A. (2007). Conditional must not aliasing for static race detection. In ACM SIGPLAN
notices (Vol. 42, pp. 327–338). ACM.

Naik, M., Aiken, A., & Whaley, J. (2006). Effective static race detection for Java. ACM Sigplan Notices, 41,
308–319.

Nirbuchbinder, Y., Tzoref, R., & Ur, S. (2008). Deadlocks: from exhibiting to healing. Lecture Notes in
Computer Science, 5289, 104–118.

Park, S., Lu, S., & Zhou, Y. (2009). Ctrigger: exposing atomicity violation bugs from their hiding places.
ACM Sigplan Notices, 44, 25–36.

Park, S., Vuduc, R., & Harrold, M.J. (2012). A unified approach for localizing non-deadlock concur-
rency bugs. In 2012 IEEE 5th international conference on software testing, verification and validation
(pp. 51–60). IEEE.

Park, S., Vuduc, R.W., & Harrold, M.J. (2010). Falcon: fault localization in concurrent programs. In Proceed-
ings of the 32nd ACM/IEEE international conference on software engineering (Vol. 1, pp. 245–254).
ACM.

Prvulovic, M., & Torrellas, J. (2003). Reenact: using thread-level speculation mechanisms to debug data
races in multithreaded codes. ACM Sigarch Computer Architecture News, 31, 110–121.

Pyla, H.K., & Varadarajan, S. (2010). Avoiding deadlock avoidance. In International conference on parallel
architecture and compilation techniques (pp. 75–86).

Qadeer, S., & Rehof, J. (2005). Context-bounded model checking of concurrent software. In Proceedings of
the 11th international conference on tools and algorithms for the construction and analysis of systems
(pp. 93–107).

Qin, F., Tucek, J., Sundaresan, J., & Zhou, Y. (2005). Rx: treating bugs as allergies—a safe method to survive
software failures. In ACM sigops operating systems review (Vol. 39, pp. 235–248). ACM.

Rabinovitz, I., & Grumberg, O. (2005). Bounded model checking of concurrent programs. In Proceedings of
the 17th international conference on computer aided verification (pp. 82–97).

Rajamani, S., Ramalingam, G., Ranganath, V.P., & Vaswani, K. (2009). Isolator: dynamically ensuring iso-
lation in concurrent programs. In International conference on architectural support for programming
languages and operating systems, ASPLOS 2009 (pp. 181–192). Washington DC, USA.

Ratanaworabhan, P., Burtscher, M., Kirovski, D., Zorn, B., Nagpal, R., & Pattabiraman, K. (2009). Detecting
and tolerating asymmetric races. In ACM sigplan notices (Vol. 44, pp. 173–184). ACM.

Rungta, N., Mercer, E.G., & Visser, W. (2009). Efficient testing of concurrent programs with abstraction-
guided symbolic execution. In Model checking software, international SPIN workshop (pp. 1885–1904).
Grenoble, France: Proceedings.

Said, M., Wang, C., Yang, Z., & Sakallah, K. (2011). Generating data race witnesses by an SMT-based
analysis. In International Conference on NASA Formal Methods (pp. 313–327).

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., & Anderson, T. (1997). Eraser: a dynamic data race
detector for multi-threaded programs. ACM Transactions on Computer Systems, 15, 391–411.

Sen, K. (2008). Race directed random testing of concurrent programs. ACM Sigplan Notices, 43, 11–21.
Sen, K., Marinov, D., & Agha, G. (2005). Cute: a concolic unit testing engine for C. In Proceedings of

the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international
symposium on foundations of software engineering (pp. 263–272).

Shi, Y., Park, S., Yin, Z., Lu, S., Zhou, Y., Chen, W., & Zheng, W. (2010). Do I use the wrong definition?:
Defuse: definition-use invariants for detecting concurrency and sequential bugs. ACM Sigplan Notices,
45, 160–174.

Sidiroglou, S., Laadan, O., Perez, C., Viennot, N., Nieh, J., & Keromytis, A.D. (2009). Assure: automatic
software self-healing using rescue points. ACM Sigarch Computer Architecture News, 37, 37–48.

Smaragdakis, Y., Evans, J., Sadowski, C., Yi, J., & Flanagan, C. (2012). Sound predictive race detection in
polynomial time. ACM Sigplan Notices, 47, 387–400.

Smith, S.O. (2013). Raft: automated techniques for diagnosing, reproducing, and fixing concurrency bugs.
Ph.D. thesis, University of Cambridge.

Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., & Zhai, C. (2014). Bug characteristics in open source software.
Empirical Software Engineering, 19, 1665–1705.

Tian, Z., Liu, T., ZHENG, Q., Zhuang, E., Fan, M., & Yang, Z. (2017). Reviving sequential program birth-
marking for multithreaded software plagiarism detection. IEEE Transactions on Software Engineering
(99), pp. 1–1.

Tillmann, N., & Halleux, J.D. (2008). Pex: white box test generation for .net. In TAP’08 Proceedings of the
2nd International Conference on Tests and Proofs (pp. 134–153).

Vaziri, M., Tip, F., & Dolby, J. (2006). Associating synchronization constraints with data in an object-oriented
language. ACM Sigplan Notices, 41, 334–345.



888 Software Qual J (2018) 26:855–889

Haojie Fu is currently a master candidate in software engineering at
Tianjin University, China. She received a B.Sc. degree in software
engineering from Tianjin University, China, in 2015. Her research
interests include software fault localization, concurrency debugging,
and automatic program repair.

Veeraraghavan, K., Chen, P.M., Flinn, J., & Narayanasamy, S. (2011). Detecting and surviving data races
using complementary schedules. In Proceedings of the 23rd ACM symposium on operating systems
principles (pp. 369–384). ACM.

Voung, J.W., Jhala, R., & Lerner, S. (2007). Relay: static race detection on millions of lines of code. In Joint
meeting of the European software engineering conference and the ACM sigsoft international symposium
on foundations of software Engineering (pp. 205–214). Dubrovnik, Croatia.

Wang, C., Kundu, S., Limaye, R., Ganai, M., & Gupta, A. (2011). Symbolic predictive analysis for concurrent
programs. Formal Aspects of Computing, 23, 781–805.

Wang, C., Yang, Z., Kahlon, V., & Gupta, A. (2008). Peephole partial order reduction. In Theory and practice
of software, international conference on TOOLS and algorithms for the construction and analysis of
systems (pp. 382–396).

Wang, Y., Liao, H., Reveliotis, S., Kelly, T., Mahlke, S., & Lafortune, S. (2009). Gadara nets: Modeling
and analyzing lock allocation for deadlock avoidance in multithreaded software. In IEEE conference on
decision and control (pp. 4971–4976).

Wang, C., Limaye, R., Ganai, M., & Gupta, A. (2010). Trace-based symbolic analysis for atomicity viola-
tions. In Proceedings of the 16th international conference on tools and algorithms for the construction
and analysis of systems (pp. 328–342).

Wang, H., Liu, T., Guan, X., Shen, C., Zheng, Q., & Yang, Z. (2017). Dependence guided symbolic execution.
IEEE Transactions on Software Engineering, 43(3), 252–271.

Weeratunge, D., Zhang, X., & Jaganathan, S. (2011). Accentuating the positive: atomicity inference and
enforcement using correct executions. ACM SIGPLAN Notices, 46, 19–34.

Xu, M., Bodı́k, R., & Hill, M.D. (2005). A serializability violation detector for shared-memory server
programs. ACM Sigplan Notices, 40, 1–14.

Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., & Bairavasundaram, L. (2011). How do fixes become bugs? In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations
of software Engineering (pp. 26–36). ACM.

Yu, J., & Narayanasamy, S. (2009). A case for an interleaving constrained shared-memory multi-processor.
ACM Sigarch Computer Architecture News, 37, 325–336.

Yu, Y., Rodeheffer, T., & Chen, W. (2005). Racetrack: efficient detection of data race conditions via adaptive
tracking. In ACM SIGOPS operating systems review (Vol. 39, pp. 221–234). ACM.

Yu, J., Narayanasamy, S., Pereira, C., & Pokam, G. (2012). Maple: a coverage-driven testing tool for
multithreaded programs. ACM Sigplan Notices, 47, 485–502.

Zhang, W., Sun, C., & Lu, S. (2010). Conmem: detecting severe concurrency bugs through an effect-oriented
approach. ACM Sigarch Computer Architecture News, 38, 179–192.

Zhang, W., Lim, J., Olichandran, R., Scherpelz, J., Jin, G., Lu, S., & Reps, T. (2011). Conseq: detecting
concurrency bugs through sequential errors. ACM Sigplan Notices, 39, 251–264.

Zhang, W., De Kruijf, M., Li, A., Lu, S., & Sankaralingam, K. (2013). Conair: featherweight concurrency
bug recovery via single-threaded idempotent execution. ACM SIGARCH Computer Architecture News,
41, 113–126.

Zhang, M., Wu, Y., Shan, L.U., Qi, S., Ren, J., & Zheng, W. (2016). A lightweight system for detecting and
tolerating concurrency bugs. IEEE Transactions on Software Engineering, 42(10), 899–917.



Software Qual J (2018) 26:855–889 889

Zan Wang received a B.Sc. from the Department of Applied Math-
ematics (2000), a master’s degree from the Department of Computer
Science (2004), and a Ph.D. degree in Information Systems (2009)
from Tianjin University, China, respectively. He is currently work-
ing as an associate professor at the School of Computer Software at
Tianjin University. His research interests are mainly in software test-
ing and analysis, such as software bug localization, concurrency bugs
detection, and automatic repair.

Xiang Chen received a B.Sc. degree from the School of Man-
agement from Xi’an Jiaotong University, China, in 2002. He then
received M.Sc. and Ph.D. degrees in computer science from Nanjing
University, China, in 2008, and 2011, respectively. He is with the
Department of Computer Science and Technology at Nantong Uni-
versity as an associate professor. His research interests are mainly
in software testing, such as combinatorial testing, regression testing,
and fault localization. He has published over 30 papers in referred
journals or conferences.

Xiangyu Fan received a B.Sc. degree in software engineering from
Tianjin University, China, in 2014. He is currently a master candidate
in software engineering at Tianjin University, China. His research
interests are mainly in software testing and software quality. He has
some papers in referred journals about fault localization.


	A systematic survey on automated concurrency bug detection, exposing, avoidance, and fixing techniques
	Abstract
	Introduction
	Review method
	Concurrency bugs classifications
	The features of concurrency bugs

	Automated concurrency bug exposing
	Random delay disturbance
	Thread scheduling/switch
	Fuzzing
	Conclusions of concurrency bug exposing methods

	Automated concurrency bug detection
	Static methods
	Dynamic methods
	Hybrid methods
	Combination of static and dynamic methods
	Formal methods

	Conclusions of concurrency bug detection methods

	Automated concurrency bug avoidance
	Adding synchronization
	Forcing fixed execution order
	Software transaction memory
	Deadlock avoidance and recovery
	Type and effect system methods
	Petri nets methods
	Run-time methods

	Conclusions of concurrency bug avoidance methods

	Automated concurrency bug fixing
	The framework of automated concurrency bug fixing
	Concurrency bug localization
	Fix-strategy planning and implementation
	Patch verification and optimization
	Automated deadlock fixing
	Conclusions of concurrency bug-fixing methods

	Benchmark summary
	The active research groups and their contribution
	Cai et al.
	Flanagan et al.
	Huang, Liu, and Zhang et al.
	Lu et al.
	Lucia et al.
	Park et al.

	Conclusions and future work
	Acknowledgements
	References




